/* mpfr_pow_z -- power function x^z with z a MPZ Copyright 2005 Free Software Foundation, Inc. This file is part of the MPFR Library. The MPFR Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The MPFR Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the MPFR Library; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #define MPFR_NEED_LONGLONG_H #include "mpfr-impl.h" static int mpfr_pow_pos_z (mpfr_ptr y, mpfr_srcptr x, mpz_srcptr z, mp_rnd_t rnd) { mpfr_t res; mp_prec_t prec, err; int inexact; mp_rnd_t rnd1; mpz_t absz; mp_size_t size_z; MPFR_ZIV_DECL (loop); MPFR_ASSERTD (mpz_sgn (z) != 0); if (MPFR_UNLIKELY (mpz_cmpabs_ui (z, 1) == 0)) return mpfr_set (y, x, rnd); rnd1 = MPFR_IS_POS (x) ? GMP_RNDU : GMP_RNDD; /* away */ absz[0] = z[0]; SIZ (absz) = ABS(SIZ(absz)); /* Hack to get abs(z) */ MPFR_MPZ_SIZEINBASE2 (size_z, z); prec = MPFR_PREC (x) + 3 + size_z; mpfr_init2 (res, prec); MPFR_ZIV_INIT (loop, prec); for (;;) { mp_size_t i = size_z; /* now 2^(i-1) <= z < 2^i */ err = prec <= (mpfr_prec_t) i ? 0 : prec - (mpfr_prec_t) i; MPFR_ASSERTD (i >= 2); mpfr_clear_overflow (); mpfr_clear_underflow (); /* First step: compute square from y */ inexact = mpfr_mul (res, x, x, GMP_RNDU); if (mpz_tstbit (absz, i-2)) inexact |= mpfr_mul (res, res, x, rnd1); for (i -= 3; i >= 0 && !mpfr_underflow_p() && !mpfr_overflow_p (); i--) { inexact |= mpfr_sqr (res, res, GMP_RNDU); if (mpz_tstbit (absz, i)) inexact |= mpfr_mul (res, res, x, rnd1); } if (MPFR_LIKELY (inexact == 0 || mpfr_overflow_p () || mpfr_underflow_p () || mpfr_can_round (res, err, GMP_RNDN, GMP_RNDZ, MPFR_PREC (y) + (rnd == GMP_RNDN)))) break; /* Actualisation of the precision */ MPFR_ZIV_NEXT (loop, prec); mpfr_set_prec (res, prec); } MPFR_ZIV_FREE (loop); inexact = mpfr_set (y, res, rnd); mpfr_clear (res); /* Check Overflow */ if (MPFR_UNLIKELY (mpfr_overflow_p ())) return mpfr_overflow (y, rnd, mpz_odd_p (absz) ? MPFR_SIGN (x) : MPFR_SIGN_POS); /* Check Underflow */ else if (MPFR_UNLIKELY (mpfr_underflow_p ())) { if (rnd == GMP_RNDN) rnd = GMP_RNDZ; return mpfr_underflow (y, rnd, mpz_odd_p (absz) ? MPFR_SIGN (x) : MPFR_SIGN_POS); } return inexact; } /* The computation of y=pow(x,z) is done by * y=pow_ui(x,z) if z>0 * else * y=1/pow_ui(x,z) if z<0 */ int mpfr_pow_z (mpfr_ptr y, mpfr_srcptr x, mpz_srcptr z, mp_rnd_t rnd) { int inexact; mpz_t tmp; MPFR_SAVE_EXPO_DECL (expo); if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x))) { if (MPFR_IS_NAN (x)) { MPFR_SET_NAN (y); MPFR_RET_NAN; } else if (mpz_sgn (z) == 0) /* y^0 = 1 for any y except NAN */ return mpfr_set_ui (y, 1, rnd); else if (MPFR_IS_INF (x)) { /* Inf^n = Inf, (-Inf)^n = Inf for n even, -Inf for n odd */ /* Inf ^(-n) = 0, sign = + if x>0 or z even */ if (mpz_sgn (z) > 0) MPFR_SET_INF (y); else MPFR_SET_ZERO (y); if (MPFR_UNLIKELY (MPFR_IS_NEG (x) && mpz_odd_p (z))) MPFR_SET_NEG (y); else MPFR_SET_POS (y); MPFR_RET (0); } else /* x is zero */ { MPFR_ASSERTD (MPFR_IS_ZERO(x)); if (mpz_sgn (z) > 0) /* 0^n = +/-0 for any n */ MPFR_SET_ZERO (y); else /* 0^(-n) if +/- INF */ MPFR_SET_INF (y); if (MPFR_LIKELY (MPFR_IS_POS (x) || mpz_even_p (z))) MPFR_SET_POS (y); else MPFR_SET_NEG (y); MPFR_RET(0); } } if (MPFR_UNLIKELY (mpz_sgn (z) == 0)) /* y^0 = 1 for any y except NAN */ return mpfr_set_ui (y, 1, rnd); /* detect exact powers: x^-n is exact iff x is a power of 2 Do it if n > 0 too (faster). */ if (MPFR_UNLIKELY (mpfr_cmp_si_2exp (x, MPFR_SIGN (x), MPFR_EXP (x) - 1) == 0)) { mp_exp_t expx = MPFR_EXP (x); /* warning: x and y may be the same variable */ mpfr_set_si (y, mpz_odd_p (z) ? MPFR_INT_SIGN(x) : 1, rnd); MPFR_ASSERTD (MPFR_IS_FP (y)); mpz_init (tmp); mpz_mul_si (tmp, z, expx-1); MPFR_ASSERTD (MPFR_GET_EXP (y) == 1); mpz_add_ui (tmp, tmp, 1); inexact = 0; if (MPFR_UNLIKELY (mpz_cmp_si (tmp, __gmpfr_emin) < 0)) { /* The following test is necessary because in the rounding to the * nearest mode, mpfr_underflow always rounds away from 0. In * this rounding mode, we need to round to 0 if: * _ |y| < 2^(emin-2), or * _ |y| = 2^(emin-2) and the absolute value of the exact * result is <= 2^(emin-2). * NOTE: y is a power of 2 and inexact = 0! */ if (rnd == GMP_RNDN && mpz_cmp_si (tmp, __gmpfr_emin-1) < 0) rnd = GMP_RNDZ; inexact = mpfr_underflow (y, rnd, MPFR_SIGN (y)); } else if (MPFR_UNLIKELY (mpz_cmp_si (tmp, __gmpfr_emax) > 0)) inexact = mpfr_overflow (y, rnd, MPFR_SIGN(x)); else MPFR_SET_EXP (y, mpz_get_si (tmp)); mpz_clear (tmp); MPFR_RET (inexact); } MPFR_SAVE_EXPO_MARK (expo); __gmpfr_emin -= 3; /* So that we can check for underflow properly */ if (mpz_sgn (z) > 0) inexact = mpfr_pow_pos_z (y, x, z, rnd); else { /* Declaration of the intermediary variable */ mpfr_t t; mp_prec_t Nt; /* Precision of the intermediary variable */ MPFR_ZIV_DECL (loop); /* compute the precision of intermediary variable */ Nt = MAX (MPFR_PREC (x), MPFR_PREC (y)); /* the optimal number of bits : see algorithms.ps */ Nt = Nt + 3 + MPFR_INT_CEIL_LOG2 (Nt); /* initialise of intermediary variable */ mpfr_init2 (t, Nt); MPFR_ZIV_INIT (loop, Nt); for (;;) { /* compute 1/(x^n) n>0 */ mpfr_pow_pos_z (t, x, z, GMP_RNDN); inexact = MPFR_IS_ZERO (t) || MPFR_IS_INF (t); mpfr_ui_div (t, 1, t, GMP_RNDN); inexact = inexact || MPFR_IS_ZERO (t) || MPFR_IS_INF (t); if (MPFR_LIKELY (inexact != 0 || mpfr_can_round (t, Nt - 3, GMP_RNDN, GMP_RNDZ, MPFR_PREC (y) + (rnd == GMP_RNDN)))) break; /* actualisation of the precision */ MPFR_ZIV_NEXT (loop, Nt); mpfr_set_prec (t, Nt); } MPFR_ZIV_FREE (loop); inexact = mpfr_set (y, t, rnd); mpfr_clear (t); } MPFR_SAVE_EXPO_FREE (expo); return mpfr_check_range (y, inexact, rnd); }