/* mpfr_rint -- Round to an integer. Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc. Contributed by the Arenaire and Cacao projects, INRIA. This file is part of the GNU MPFR Library. The GNU MPFR Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU MPFR Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU MPFR Library; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */ #include "mpfr-impl.h" /* Merge the following mpfr_rint code with mpfr_round_raw_generic? */ int mpfr_rint (mpfr_ptr r, mpfr_srcptr u, mpfr_rnd_t rnd_mode) { int sign; int rnd_away; mp_exp_t exp; if (MPFR_UNLIKELY( MPFR_IS_SINGULAR(u) )) { if (MPFR_IS_NAN(u)) { MPFR_SET_NAN(r); MPFR_RET_NAN; } MPFR_SET_SAME_SIGN(r, u); if (MPFR_IS_INF(u)) { MPFR_SET_INF(r); MPFR_RET(0); /* infinity is exact */ } else /* now u is zero */ { MPFR_ASSERTD(MPFR_IS_ZERO(u)); MPFR_SET_ZERO(r); MPFR_RET(0); /* zero is exact */ } } MPFR_SET_SAME_SIGN (r, u); /* Does nothing if r==u */ sign = MPFR_INT_SIGN (u); exp = MPFR_GET_EXP (u); rnd_away = rnd_mode == GMP_RNDD ? sign < 0 : rnd_mode == GMP_RNDU ? sign > 0 : rnd_mode == GMP_RNDZ ? 0 : -1; /* rnd_away: 1 if round away from zero, 0 if round to zero, -1 if not decided yet. */ if (MPFR_UNLIKELY (exp <= 0)) /* 0 < |u| < 1 ==> round |u| to 0 or 1 */ { /* Note: in the GMP_RNDN mode, 0.5 must be rounded to 0. */ if (rnd_away != 0 && (rnd_away > 0 || (exp == 0 && (rnd_mode == GMP_RNDNA || !mpfr_powerof2_raw (u))))) { mp_limb_t *rp; mp_size_t rm; rp = MPFR_MANT(r); rm = (MPFR_PREC(r) - 1) / BITS_PER_MP_LIMB; rp[rm] = MPFR_LIMB_HIGHBIT; MPN_ZERO(rp, rm); MPFR_SET_EXP (r, 1); /* |r| = 1 */ MPFR_RET(sign > 0 ? 2 : -2); } else { MPFR_SET_ZERO(r); /* r = 0 */ MPFR_RET(sign > 0 ? -2 : 2); } } else /* exp > 0, |u| >= 1 */ { mp_limb_t *up, *rp; mp_size_t un, rn, ui; int sh, idiff; int uflags; /* * uflags will contain: * _ 0 if u is an integer representable in r, * _ 1 if u is an integer not representable in r, * _ 2 if u is not an integer. */ up = MPFR_MANT(u); rp = MPFR_MANT(r); un = MPFR_LIMB_SIZE(u); rn = MPFR_LIMB_SIZE(r); MPFR_UNSIGNED_MINUS_MODULO (sh, MPFR_PREC (r)); MPFR_SET_EXP (r, exp); /* Does nothing if r==u */ if ((exp - 1) / BITS_PER_MP_LIMB >= un) { ui = un; idiff = 0; uflags = 0; /* u is an integer, representable or not in r */ } else { mp_size_t uj; ui = (exp - 1) / BITS_PER_MP_LIMB + 1; /* #limbs of the int part */ MPFR_ASSERTD (un >= ui); uj = un - ui; /* lowest limb of the integer part */ idiff = exp % BITS_PER_MP_LIMB; /* #int-part bits in up[uj] or 0 */ uflags = idiff == 0 || (up[uj] << idiff) == 0 ? 0 : 2; if (uflags == 0) while (uj > 0) if (up[--uj] != 0) { uflags = 2; break; } } if (ui > rn) { /* More limbs in the integer part of u than in r. Just round u with the precision of r. */ MPFR_ASSERTD (rp != up && un > rn); MPN_COPY (rp, up + (un - rn), rn); /* r != u */ if (rnd_away < 0) { /* This is a rounding to nearest mode (GMP_RNDN or GMP_RNDNA). Decide the rounding direction here. */ if (rnd_mode == GMP_RNDN && (rp[0] & (MPFR_LIMB_ONE << sh)) == 0) { /* halfway cases rounded towards zero */ mp_limb_t a, b; /* a: rounding bit and some of the following bits */ /* b: boundary for a (weight of the rounding bit in a) */ if (sh != 0) { a = rp[0] & ((MPFR_LIMB_ONE << sh) - 1); b = MPFR_LIMB_ONE << (sh - 1); } else { a = up[un - rn - 1]; b = MPFR_LIMB_HIGHBIT; } rnd_away = a > b; if (a == b) { mp_size_t i; for (i = un - rn - 1 - (sh == 0); i >= 0; i--) if (up[i] != 0) { rnd_away = 1; break; } } } else /* halfway cases rounded away from zero */ rnd_away = /* rounding bit */ ((sh != 0 && (rp[0] & (MPFR_LIMB_ONE << (sh - 1))) != 0) || (sh == 0 && (up[un - rn - 1] & MPFR_LIMB_HIGHBIT) != 0)); } if (uflags == 0) { /* u is an integer; determine if it is representable in r */ if (sh != 0 && rp[0] << (BITS_PER_MP_LIMB - sh) != 0) uflags = 1; /* u is not representable in r */ else { mp_size_t i; for (i = un - rn - 1; i >= 0; i--) if (up[i] != 0) { uflags = 1; /* u is not representable in r */ break; } } } } else /* ui <= rn */ { mp_size_t uj, rj; int ush; uj = un - ui; /* lowest limb of the integer part in u */ rj = rn - ui; /* lowest limb of the integer part in r */ if (MPFR_LIKELY (rp != up)) MPN_COPY(rp + rj, up + uj, ui); /* Ignore the lowest rj limbs, all equal to zero. */ rp += rj; rn = ui; /* number of fractional bits in whole rp[0] */ ush = idiff == 0 ? 0 : BITS_PER_MP_LIMB - idiff; if (rj == 0 && ush < sh) { /* If u is an integer (uflags == 0), we need to determine if it is representable in r, i.e. if its sh - ush bits in the non-significant part of r are all 0. */ if (uflags == 0 && (rp[0] & ((MPFR_LIMB_ONE << sh) - (MPFR_LIMB_ONE << ush))) != 0) uflags = 1; /* u is an integer not representable in r */ } else /* The integer part of u fits in r, we'll round to it. */ sh = ush; if (rnd_away < 0) { /* This is a rounding to nearest mode. Decide the rounding direction here. */ if (uj == 0 && sh == 0) rnd_away = 0; /* rounding bit = 0 (not represented in u) */ else if (rnd_mode == GMP_RNDN && (rp[0] & (MPFR_LIMB_ONE << sh)) == 0) { /* halfway cases rounded towards zero */ mp_limb_t a, b; /* a: rounding bit and some of the following bits */ /* b: boundary for a (weight of the rounding bit in a) */ if (sh != 0) { a = rp[0] & ((MPFR_LIMB_ONE << sh) - 1); b = MPFR_LIMB_ONE << (sh - 1); } else { MPFR_ASSERTD (uj >= 1); /* see above */ a = up[uj - 1]; b = MPFR_LIMB_HIGHBIT; } rnd_away = a > b; if (a == b) { mp_size_t i; for (i = uj - 1 - (sh == 0); i >= 0; i--) if (up[i] != 0) { rnd_away = 1; break; } } } else /* halfway cases rounded away from zero */ rnd_away = /* rounding bit */ ((sh != 0 && (rp[0] & (MPFR_LIMB_ONE << (sh - 1))) != 0) || (sh == 0 && (MPFR_ASSERTD (uj >= 1), up[uj - 1] & MPFR_LIMB_HIGHBIT) != 0)); } /* Now we can make the low rj limbs to 0 */ MPN_ZERO (rp-rj, rj); } if (sh != 0) rp[0] &= MP_LIMB_T_MAX << sh; /* If u is a representable integer, there is no rounding. */ if (uflags == 0) MPFR_RET(0); MPFR_ASSERTD (rnd_away >= 0); /* rounding direction is defined */ if (rnd_away && mpn_add_1(rp, rp, rn, MPFR_LIMB_ONE << sh)) { if (exp == __gmpfr_emax) return mpfr_overflow(r, rnd_mode, MPFR_SIGN(r)) >= 0 ? uflags : -uflags; else { MPFR_SET_EXP(r, exp + 1); rp[rn-1] = MPFR_LIMB_HIGHBIT; } } MPFR_RET (rnd_away ^ (sign < 0) ? uflags : -uflags); } /* exp > 0, |u| >= 1 */ } #undef mpfr_round int mpfr_round (mpfr_ptr r, mpfr_srcptr u) { return mpfr_rint(r, u, GMP_RNDNA); } #undef mpfr_trunc int mpfr_trunc (mpfr_ptr r, mpfr_srcptr u) { return mpfr_rint(r, u, GMP_RNDZ); } #undef mpfr_ceil int mpfr_ceil (mpfr_ptr r, mpfr_srcptr u) { return mpfr_rint(r, u, GMP_RNDU); } #undef mpfr_floor int mpfr_floor (mpfr_ptr r, mpfr_srcptr u) { return mpfr_rint(r, u, GMP_RNDD); } #undef mpfr_rint_round int mpfr_rint_round (mpfr_ptr r, mpfr_srcptr u, mpfr_rnd_t rnd_mode) { if (MPFR_UNLIKELY( MPFR_IS_SINGULAR(u) ) || mpfr_integer_p (u)) return mpfr_set (r, u, rnd_mode); else { mpfr_t tmp; int inex; MPFR_SAVE_EXPO_DECL (expo); MPFR_BLOCK_DECL (flags); MPFR_SAVE_EXPO_MARK (expo); mpfr_init2 (tmp, MPFR_PREC (u)); /* round(u) is representable in tmp unless an overflow occurs */ MPFR_BLOCK (flags, mpfr_round (tmp, u)); inex = (MPFR_OVERFLOW (flags) ? mpfr_overflow (r, rnd_mode, MPFR_SIGN (u)) : mpfr_set (r, tmp, rnd_mode)); mpfr_clear (tmp); MPFR_SAVE_EXPO_FREE (expo); return mpfr_check_range (r, inex, rnd_mode); } } #undef mpfr_rint_trunc int mpfr_rint_trunc (mpfr_ptr r, mpfr_srcptr u, mpfr_rnd_t rnd_mode) { if (MPFR_UNLIKELY( MPFR_IS_SINGULAR(u) ) || mpfr_integer_p (u)) return mpfr_set (r, u, rnd_mode); else { mpfr_t tmp; int inex; MPFR_SAVE_EXPO_DECL (expo); MPFR_SAVE_EXPO_MARK (expo); mpfr_init2 (tmp, MPFR_PREC (u)); /* trunc(u) is always representable in tmp */ mpfr_trunc (tmp, u); inex = mpfr_set (r, tmp, rnd_mode); mpfr_clear (tmp); MPFR_SAVE_EXPO_FREE (expo); return mpfr_check_range (r, inex, rnd_mode); } } #undef mpfr_rint_ceil int mpfr_rint_ceil (mpfr_ptr r, mpfr_srcptr u, mpfr_rnd_t rnd_mode) { if (MPFR_UNLIKELY( MPFR_IS_SINGULAR(u) ) || mpfr_integer_p (u)) return mpfr_set (r, u, rnd_mode); else { mpfr_t tmp; int inex; MPFR_SAVE_EXPO_DECL (expo); MPFR_BLOCK_DECL (flags); MPFR_SAVE_EXPO_MARK (expo); mpfr_init2 (tmp, MPFR_PREC (u)); /* ceil(u) is representable in tmp unless an overflow occurs */ MPFR_BLOCK (flags, mpfr_ceil (tmp, u)); inex = (MPFR_OVERFLOW (flags) ? mpfr_overflow (r, rnd_mode, MPFR_SIGN_POS) : mpfr_set (r, tmp, rnd_mode)); mpfr_clear (tmp); MPFR_SAVE_EXPO_FREE (expo); return mpfr_check_range (r, inex, rnd_mode); } } #undef mpfr_rint_floor int mpfr_rint_floor (mpfr_ptr r, mpfr_srcptr u, mpfr_rnd_t rnd_mode) { if (MPFR_UNLIKELY( MPFR_IS_SINGULAR(u) ) || mpfr_integer_p (u)) return mpfr_set (r, u, rnd_mode); else { mpfr_t tmp; int inex; MPFR_SAVE_EXPO_DECL (expo); MPFR_BLOCK_DECL (flags); MPFR_SAVE_EXPO_MARK (expo); mpfr_init2 (tmp, MPFR_PREC (u)); /* floor(u) is representable in tmp unless an overflow occurs */ MPFR_BLOCK (flags, mpfr_floor (tmp, u)); inex = (MPFR_OVERFLOW (flags) ? mpfr_overflow (r, rnd_mode, MPFR_SIGN_NEG) : mpfr_set (r, tmp, rnd_mode)); mpfr_clear (tmp); MPFR_SAVE_EXPO_FREE (expo); return mpfr_check_range (r, inex, rnd_mode); } }