/* mpfr_set_ld -- convert a machine long double to a multiple precision floating-point number Copyright 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc. Contributed by the Arenaire and Cacao projects, INRIA. This file is part of the GNU MPFR Library. The GNU MPFR Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. The GNU MPFR Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU MPFR Library; see the file COPYING.LIB. If not, see http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #define MPFR_NEED_LONGLONG_H #include "mpfr-impl.h" /* Various i386 systems have been seen with float.h LDBL constants equal to the DBL ones, whereas they ought to be bigger, reflecting the 10-byte IEEE extended format on that processor. gcc 3.2.1 on FreeBSD and Solaris has been seen with the problem, and gcc 2.95.4 on FreeBSD 4.7. */ #if HAVE_LDOUBLE_IEEE_EXT_LITTLE static const struct { char bytes[10]; long double dummy; /* for memory alignment */ } ldbl_max_struct = { { '\377','\377','\377','\377', '\377','\377','\377','\377', '\376','\177' }, 0.0 }; #define MPFR_LDBL_MAX (* (const long double *) ldbl_max_struct.bytes) #else #define MPFR_LDBL_MAX LDBL_MAX #endif #ifndef HAVE_LDOUBLE_IEEE_EXT_LITTLE /* Generic code */ int mpfr_set_ld (mpfr_ptr r, long double d, mp_rnd_t rnd_mode) { mpfr_t t, u; int inexact, shift_exp; long double x; MPFR_SAVE_EXPO_DECL (expo); /* Check for NAN */ LONGDOUBLE_NAN_ACTION (d, goto nan); /* Check for INF */ if (d > MPFR_LDBL_MAX) { mpfr_set_inf (r, 1); return 0; } else if (d < -MPFR_LDBL_MAX) { mpfr_set_inf (r, -1); return 0; } /* Check for ZERO */ else if (d == 0.0) return mpfr_set_d (r, (double) d, rnd_mode); mpfr_init2 (t, MPFR_LDBL_MANT_DIG); mpfr_init2 (u, IEEE_DBL_MANT_DIG); MPFR_SAVE_EXPO_MARK (expo); convert: x = d; MPFR_SET_ZERO (t); /* The sign doesn't matter. */ shift_exp = 0; /* invariant: remainder to deal with is d*2^shift_exp */ while (x != (long double) 0.0) { /* Check overflow of double */ if (x > (long double) DBL_MAX || (-x) > (long double) DBL_MAX) { long double div9, div10, div11, div12, div13; #define TWO_64 18446744073709551616.0 /* 2^64 */ #define TWO_128 (TWO_64 * TWO_64) #define TWO_256 (TWO_128 * TWO_128) div9 = (long double) (double) (TWO_256 * TWO_256); /* 2^(2^9) */ div10 = div9 * div9; div11 = div10 * div10; /* 2^(2^11) */ div12 = div11 * div11; /* 2^(2^12) */ div13 = div12 * div12; /* 2^(2^13) */ if (ABS (x) >= div13) { x /= div13; /* exact */ shift_exp += 8192; } if (ABS (x) >= div12) { x /= div12; /* exact */ shift_exp += 4096; } if (ABS (x) >= div11) { x /= div11; /* exact */ shift_exp += 2048; } if (ABS (x) >= div10) { x /= div10; /* exact */ shift_exp += 1024; } /* warning: we may have DBL_MAX=2^1024*(1-2^(-53)) < x < 2^1024, therefore we have one extra exponent reduction step */ if (ABS (x) >= div9) { x /= div9; /* exact */ shift_exp += 512; } } /* Check overflow of double */ else { long double div9, div10, div11; div9 = (long double) (double) 7.4583407312002067432909653e-155; /* div9 = 2^(-2^9) */ div10 = div9 * div9; /* 2^(-2^10) */ div11 = div10 * div10; /* 2^(-2^11) if extended precision */ /* since -DBL_MAX <= x <= DBL_MAX, the cast to double should not overflow here */ if (ABS(x) < div10 && div11 != (long double) 0.0 && div11 / div10 == div10) /* possible underflow */ { long double div12, div13; /* After the divisions, any bit of x must be >= div10, hence the possible division by div9. */ div12 = div11 * div11; /* 2^(-2^12) */ div13 = div12 * div12; /* 2^(-2^13) */ if (ABS (x) <= div13) { x /= div13; /* exact */ shift_exp -= 8192; } if (ABS (x) <= div12) { x /= div12; /* exact */ shift_exp -= 4096; } if (ABS (x) <= div11) { x /= div11; /* exact */ shift_exp -= 2048; } if (ABS (x) <= div10) { x /= div10; /* exact */ shift_exp -= 1024; } if (ABS(x) <= div9) { x /= div9; /* exact */ shift_exp -= 512; } } else { inexact = mpfr_set_d (u, (double) x, MPFR_RNDZ); MPFR_ASSERTD (inexact == 0); if (mpfr_add (t, t, u, MPFR_RNDZ) != 0) { if (!mpfr_number_p (t)) break; /* Inexact. This cannot happen unless the C implementation "lies" on the precision or when long doubles are implemented with FP expansions like under Mac OS X. */ if (MPFR_PREC (t) != MPFR_PREC (r) + 1) { /* We assume that MPFR_PREC (r) < MPFR_PREC_MAX. The precision MPFR_PREC (r) + 1 allows us to deduce the rounding bit and the sticky bit. */ mpfr_set_prec (t, MPFR_PREC (r) + 1); goto convert; } else { mp_limb_t *tp; int rb_mask; /* Since mpfr_add was inexact, the sticky bit is 1. */ tp = MPFR_MANT (t); rb_mask = MPFR_LIMB_ONE << (BITS_PER_MP_LIMB - 1 - (MPFR_PREC (r) & (BITS_PER_MP_LIMB - 1))); if (rnd_mode == MPFR_RNDN) rnd_mode = (*tp & rb_mask) ^ MPFR_IS_NEG (t) ? MPFR_RNDU : MPFR_RNDD; *tp |= rb_mask; break; } } x -= (long double) mpfr_get_d1 (u); /* exact */ } } } inexact = mpfr_mul_2si (r, t, shift_exp, rnd_mode); mpfr_clear (t); mpfr_clear (u); MPFR_SAVE_EXPO_FREE (expo); return mpfr_check_range (r, inexact, rnd_mode); nan: MPFR_SET_NAN(r); MPFR_RET_NAN; } #else /* IEEE Extended Little Endian Code */ int mpfr_set_ld (mpfr_ptr r, long double d, mp_rnd_t rnd_mode) { int inexact, i, k, cnt; mpfr_t tmp; mp_limb_t tmpmant[MPFR_LIMBS_PER_LONG_DOUBLE]; mpfr_long_double_t x; mp_exp_t exp; int signd; MPFR_SAVE_EXPO_DECL (expo); /* Check for NAN */ if (MPFR_UNLIKELY (d != d)) { MPFR_SET_NAN (r); MPFR_RET_NAN; } /* Check for INF */ else if (MPFR_UNLIKELY (d > MPFR_LDBL_MAX)) { MPFR_SET_INF (r); MPFR_SET_POS (r); return 0; } else if (MPFR_UNLIKELY (d < -MPFR_LDBL_MAX)) { MPFR_SET_INF (r); MPFR_SET_NEG (r); return 0; } /* Check for ZERO */ else if (MPFR_UNLIKELY (d == 0.0)) { x.ld = d; MPFR_SET_ZERO (r); if (x.s.sign == 1) MPFR_SET_NEG(r); else MPFR_SET_POS(r); return 0; } /* now d is neither 0, nor NaN nor Inf */ MPFR_SAVE_EXPO_MARK (expo); MPFR_MANT (tmp) = tmpmant; MPFR_PREC (tmp) = 64; /* Extract sign */ x.ld = d; signd = MPFR_SIGN_POS; if (x.ld < 0.0) { signd = MPFR_SIGN_NEG; x.ld = -x.ld; } /* Extract mantissa */ #if BITS_PER_MP_LIMB >= 64 tmpmant[0] = ((mp_limb_t) x.s.manh << 32) | ((mp_limb_t) x.s.manl); #else tmpmant[0] = (mp_limb_t) x.s.manl; tmpmant[1] = (mp_limb_t) x.s.manh; #endif /* Normalize mantissa */ i = MPFR_LIMBS_PER_LONG_DOUBLE; MPN_NORMALIZE_NOT_ZERO (tmpmant, i); k = MPFR_LIMBS_PER_LONG_DOUBLE - i; count_leading_zeros (cnt, tmpmant[i - 1]); if (MPFR_LIKELY (cnt != 0)) mpn_lshift (tmpmant + k, tmpmant, i, cnt); else if (k != 0) MPN_COPY (tmpmant + k, tmpmant, i); if (MPFR_UNLIKELY (k != 0)) MPN_ZERO (tmpmant, k); /* Set exponent */ exp = (mp_exp_t) ((x.s.exph << 8) + x.s.expl); /* 15-bit unsigned int */ if (MPFR_UNLIKELY (exp == 0)) exp -= 0x3FFD; else exp -= 0x3FFE; MPFR_SET_EXP (tmp, exp - cnt - k * BITS_PER_MP_LIMB); /* tmp is exact */ inexact = mpfr_set4 (r, tmp, rnd_mode, signd); MPFR_SAVE_EXPO_FREE (expo); return mpfr_check_range (r, inexact, rnd_mode); } #endif