/* mpfr_sin -- sine of a floating-point number Copyright 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc. This file is part of the MPFR Library. The MPFR Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The MPFR Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the MPFR Library; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include #define MPFR_NEED_LONGLONG_H #include "mpfr-impl.h" /* determine the sign of sin(x) using argument reduction. Assumes x is not an exact multiple of Pi (this excludes x=0). */ static int mpfr_sin_sign (mpfr_srcptr x) { mpfr_t c, k; mp_exp_t K; int sign, loops = 0; mp_prec_t m; mpfr_srcptr y; K = MPFR_GET_EXP(x); if (K < 0) /* Trivial case if x < 1 */ return MPFR_SIGN (x); m = K; mpfr_init2 (c, 2); mpfr_init2 (k, 2); do { loops ++; m += BITS_PER_MP_LIMB; if (loops > 2) /* maybe a massive cancellation, like for x near from Pi */ m += MPFR_PREC(x) / 2; mpfr_set_prec (c, m); mpfr_set_prec (k, m); /* first determine round(x/Pi): does not have to be exact since the result is an integer */ mpfr_const_pi (c, GMP_RNDN); /* err <= 1/2*ulp(c) = 2^(1-m) */ /* we need that k is not-to-badly rounded to an integer, i.e. ulp(k) <= 1, so m >= EXP(k). */ mpfr_div (k, x, c, GMP_RNDN); mpfr_round (k, k); sign = 1; if (MPFR_NOTZERO(k)) /* subtract k*approx(Pi) */ { /* determine parity of k for sign */ if (MPFR_EXP(k)<=0 || (mpfr_uexp_t) MPFR_EXP(k) <= m) { mp_size_t j = BITS_PER_MP_LIMB * MPFR_LIMB_SIZE(k) - MPFR_EXP(k); mp_size_t l = j / BITS_PER_MP_LIMB; /* parity bit is j-th bit starting from least significant bits */ if ((MPFR_MANT(k)[l] >> (j % BITS_PER_MP_LIMB)) & 1) sign = -1; /* k is odd */ } K = MPFR_GET_EXP (k); /* k is an integer, thus K >= 1, k < 2^K */ mpfr_mul (k, k, c, GMP_RNDN); /* err <= oldk*err(c) + 1/2*ulp(k) <= 2^(K+2-m) */ mpfr_sub (k, x, k, GMP_RNDN); /* assuming |k| <= Pi, err <= 2^(1-m)+2^(K+2-m) < 2^(K+3-m) */ MPFR_ASSERTN(MPFR_EXP(k) <= 2); y = k; } else { K = 1; y = x; } /* sign of sign(y) is uncertain if |y| <= err < 2^(K+3-m), thus EXP(y) < K+4-m */ } while (MPFR_IS_ZERO (y) || (MPFR_GET_EXP (y) < K + 4 - (mp_exp_t) m)); if (MPFR_IS_NEG(y)) sign = -sign; mpfr_clear (k); mpfr_clear (c); return sign; } int mpfr_sin (mpfr_ptr y, mpfr_srcptr x, mp_rnd_t rnd_mode) { int precy, m, inexact, sign; mpfr_t c; mp_exp_t e; MPFR_ZIV_DECL (loop); if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x))) { if (MPFR_IS_NAN (x) || MPFR_IS_INF (x)) { MPFR_SET_NAN (y); MPFR_RET_NAN; } else /* x is zero */ { MPFR_ASSERTD (MPFR_IS_ZERO (x)); MPFR_SET_ZERO (y); MPFR_SET_SAME_SIGN (y, x); MPFR_RET (0); } } MPFR_LOG_BEGIN (("x[%#R]=%R rnd=%d", x, x, rnd_mode)); /* Compute initial precision */ precy = MPFR_PREC (y); m = precy + MPFR_INT_CEIL_LOG2 (precy) + 13; e = MPFR_GET_EXP (x); m += (e < 0) ? -2*e : e; sign = mpfr_sin_sign (x); mpfr_init2 (c, m); MPFR_ZIV_INIT (loop, m); for (;;) { mpfr_cos (c, x, GMP_RNDZ); /* can't be exact */ mpfr_nexttoinf (c); /* now c = cos(x) rounded away */ mpfr_mul (c, c, c, GMP_RNDU); /* away */ mpfr_ui_sub (c, 1, c, GMP_RNDZ); mpfr_sqrt (c, c, GMP_RNDZ); if (MPFR_IS_NEG_SIGN(sign)) MPFR_CHANGE_SIGN(c); /* Warning c may be 0 ! */ if (MPFR_UNLIKELY (MPFR_IS_ZERO (c))) { /* Huge cancellation: increase prec a lot! */ m = MAX (m, MPFR_PREC (x)); m = 2*m; } else { /* the absolute error on c is at most 2^(3-m-EXP(c)) */ e = 2 * MPFR_GET_EXP (c) + m - 3; if (mpfr_can_round (c, e, GMP_RNDZ, rnd_mode, precy)) break; /* check for huge cancellation (Near 0) */ if (e < (mp_exp_t) MPFR_PREC (y)) m += MPFR_PREC (y) - e; /* Check if near 1 */ if (MPFR_GET_EXP (c) == 1) m += m; } /* Else generic increase */ MPFR_ZIV_NEXT (loop, m); mpfr_set_prec (c, m); } MPFR_ZIV_FREE (loop); inexact = mpfr_set (y, c, rnd_mode); /* sin(x) is exact only for x = 0, which was treated apart above; nevertheless, we can have inexact = 0 here if the approximation c is exactly representable with PREC(y) bits. Since c is an approximation towards zero, in that case the inexact flag should have the opposite sign as y. */ if (MPFR_UNLIKELY (inexact == 0)) inexact = -MPFR_INT_SIGN (y); mpfr_clear (c); MPFR_LOG_END (("y[%#R]=%R inexact=%d", y, y, inexact)); return inexact; /* inexact */ }