/* mpfr_sinh_cosh -- hyperbolic sine and cosine Copyright 2001, 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc. Contributed by the Arenaire and Cacao projects, INRIA. This file is part of the MPFR Library. The MPFR Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The MPFR Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the MPFR Library; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */ #define MPFR_NEED_LONGLONG_H #include "mpfr-impl.h" /* The computations are done by cosh(x) = 1/2 [e^(x)+e^(-x)] sinh(x) = 1/2 [e^(x)-e^(-x)] Adapted from mpfr_sinh.c */ int mpfr_sinh_cosh (mpfr_ptr sh, mpfr_ptr ch, mpfr_srcptr xt, mp_rnd_t rnd_mode) { mpfr_t x; int inexact, inexact_sh, inexact_ch; MPFR_ASSERTN (sh != ch); MPFR_LOG_FUNC (("x[%#R]=%R rnd=%d", xt, xt, rnd_mode), ("sh[%#R]=%R ch[%#R]=%R inexact=%d", sh, sh, ch, ch, inexact)); if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (xt))) { if (MPFR_IS_NAN (xt)) { MPFR_SET_NAN (ch); MPFR_SET_NAN (sh); MPFR_RET_NAN; } else if (MPFR_IS_INF (xt)) { MPFR_SET_INF (sh); MPFR_SET_SAME_SIGN (sh, xt); MPFR_SET_INF (ch); MPFR_SET_POS (ch); MPFR_RET (0); } else /* xt is zero */ { MPFR_ASSERTD (MPFR_IS_ZERO (xt)); MPFR_SET_ZERO (sh); /* sinh(0) = 0 */ MPFR_SET_SAME_SIGN (sh, xt); return mpfr_set_ui (ch, 1, rnd_mode); /* cosh(0) = 1 */ } } MPFR_TMP_INIT_ABS (x, xt); { mpfr_t s, c, ti; mp_exp_t d; mp_prec_t N; /* Precision of the intermediary variables */ long int err; /* Precision of error */ MPFR_ZIV_DECL (loop); MPFR_SAVE_EXPO_DECL (expo); MPFR_GROUP_DECL (group); MPFR_SAVE_EXPO_MARK (expo); /* compute the precision of intermediary variable */ N = MPFR_PREC (ch); N = MAX (N, MPFR_PREC (sh)); N = MAX (N, MPFR_PREC (x)); /* the optimal number of bits : see algorithms.ps */ N = N + MPFR_INT_CEIL_LOG2 (N) + 4; /* initialise of intermediary variables */ MPFR_GROUP_INIT_3 (group, N, s, c, ti); /* First computation of sinh_cosh */ MPFR_ZIV_INIT (loop, N); for (;;) { /* compute sinh_cosh */ mpfr_clear_flags (); mpfr_exp (s, x, GMP_RNDD); /* exp(x) */ /* exp(x) can overflow! */ /* BUG/TODO/FIXME: exp can overflow but sinh or cosh may be representable! */ if (MPFR_UNLIKELY (mpfr_overflow_p ())) { inexact_ch = mpfr_overflow (ch, rnd_mode, MPFR_SIGN_POS); inexact_sh = mpfr_overflow (sh, rnd_mode, MPFR_SIGN (xt)); MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, MPFR_FLAGS_OVERFLOW); break; } d = MPFR_GET_EXP (s); mpfr_ui_div (ti, 1, s, GMP_RNDU); /* 1/exp(x) */ mpfr_add (c, s, ti, GMP_RNDU); /* exp(x) + 1/exp(x) */ mpfr_sub (s, s, ti, GMP_RNDN); /* exp(x) - 1/exp(x) */ mpfr_div_2ui (c, c, 1, GMP_RNDN); /* 1/2(exp(x) + 1/exp(x)) */ mpfr_div_2ui (s, s, 1, GMP_RNDN); /* 1/2(exp(x) - 1/exp(x)) */ /* it may be that s is zero (in fact, it can only occur when exp(x)=1, and thus ti=1 too) */ if (MPFR_IS_ZERO (s)) err = N; /* double the precision */ else { /* calculation of the error */ d = d - MPFR_GET_EXP (s) + 2; /* error estimate: err = N-(__gmpfr_ceil_log2(1+pow(2,d)));*/ err = N - (MAX (d, 0) + 1); if (MPFR_LIKELY (MPFR_CAN_ROUND (s, err, MPFR_PREC (sh), rnd_mode) && \ MPFR_CAN_ROUND (c, err, MPFR_PREC (ch), rnd_mode))) { inexact_sh = mpfr_set4 (sh, s, rnd_mode, MPFR_SIGN (xt)); inexact_ch = mpfr_set (ch, c, rnd_mode); break; } } /* actualisation of the precision */ N += err; MPFR_ZIV_NEXT (loop, N); MPFR_GROUP_REPREC_3 (group, N, s, c, ti); } MPFR_ZIV_FREE (loop); MPFR_GROUP_CLEAR (group); MPFR_SAVE_EXPO_FREE (expo); } /* now, let's raise the flags if needed */ inexact = mpfr_check_range (sh, inexact_sh, rnd_mode); inexact = mpfr_check_range (ch, inexact_ch, rnd_mode) || inexact; return inexact; }