/* mpfr_const_catalan -- compute Catalan's constant. Copyright 2005-2018 Free Software Foundation, Inc. Contributed by the AriC and Caramba projects, INRIA. This file is part of the GNU MPFR Library. The GNU MPFR Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. The GNU MPFR Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */ #define MPFR_NEED_LONGLONG_H #include "mpfr-impl.h" /* Declare the cache */ MPFR_DECL_INIT_CACHE (__gmpfr_cache_const_catalan, mpfr_const_catalan_internal) /* Set User Interface */ #undef mpfr_const_catalan int mpfr_const_catalan (mpfr_ptr x, mpfr_rnd_t rnd_mode) { return mpfr_cache (x, __gmpfr_cache_const_catalan, rnd_mode); } /* return T, Q such that T/Q = sum(k!^2/(2k)!/(2k+1)^2, k=n1..n2-1) */ static void S (mpz_t T, mpz_t P, mpz_t Q, unsigned long n1, unsigned long n2) { if (n2 == n1 + 1) { if (n1 == 0) { mpz_set_ui (P, 1); mpz_set_ui (Q, 1); } else { mpz_set_ui (P, 2 * n1 - 1); mpz_mul_ui (P, P, n1); mpz_ui_pow_ui (Q, 2 * n1 + 1, 2); mpz_mul_2exp (Q, Q, 1); } mpz_set (T, P); } else { unsigned long m = (n1 + n2) / 2; mpz_t T2, P2, Q2; S (T, P, Q, n1, m); mpz_init (T2); mpz_init (P2); mpz_init (Q2); S (T2, P2, Q2, m, n2); mpz_mul (T, T, Q2); mpz_mul (T2, T2, P); mpz_add (T, T, T2); mpz_mul (P, P, P2); mpz_mul (Q, Q, Q2); mpz_clear (T2); mpz_clear (P2); mpz_clear (Q2); } } /* Don't need to save/restore exponent range: the cache does it. Catalan's constant is G = sum((-1)^k/(2*k+1)^2, k=0..infinity). We compute it using formula (31) of Victor Adamchik's page "33 representations for Catalan's constant" http://www-2.cs.cmu.edu/~adamchik/articles/catalan/catalan.htm G = Pi/8*log(2+sqrt(3)) + 3/8*sum(k!^2/(2k)!/(2k+1)^2,k=0..infinity) */ int mpfr_const_catalan_internal (mpfr_ptr g, mpfr_rnd_t rnd_mode) { mpfr_t x, y, z; mpz_t T, P, Q; mpfr_prec_t pg, p; int inex; MPFR_ZIV_DECL (loop); MPFR_GROUP_DECL (group); MPFR_LOG_FUNC (("rnd_mode=%d", rnd_mode), ("g[%Pu]=%.*Rg inex=%d", mpfr_get_prec (g), mpfr_log_prec, g, inex)); /* Here are the WC (max prec = 100.000.000) Once we have found a chain of 11, we only look for bigger chain. Found 3 '1' at 0 Found 5 '1' at 9 Found 6 '0' at 34 Found 9 '1' at 176 Found 11 '1' at 705 Found 12 '0' at 913 Found 14 '1' at 12762 Found 15 '1' at 152561 Found 16 '0' at 171725 Found 18 '0' at 525355 Found 20 '0' at 529245 Found 21 '1' at 6390133 Found 22 '0' at 7806417 Found 25 '1' at 11936239 Found 27 '1' at 51752950 */ pg = MPFR_PREC (g); p = pg + MPFR_INT_CEIL_LOG2 (pg) + 7; MPFR_GROUP_INIT_3 (group, p, x, y, z); mpz_init (T); mpz_init (P); mpz_init (Q); MPFR_ZIV_INIT (loop, p); for (;;) { mpfr_sqrt_ui (x, 3, MPFR_RNDU); mpfr_add_ui (x, x, 2, MPFR_RNDU); mpfr_log (x, x, MPFR_RNDU); mpfr_const_pi (y, MPFR_RNDU); mpfr_mul (x, x, y, MPFR_RNDN); S (T, P, Q, 0, (p - 1) / 2); mpz_mul_ui (T, T, 3); mpfr_set_z (y, T, MPFR_RNDU); mpfr_set_z (z, Q, MPFR_RNDD); mpfr_div (y, y, z, MPFR_RNDN); mpfr_add (x, x, y, MPFR_RNDN); mpfr_div_2ui (x, x, 3, MPFR_RNDN); if (MPFR_LIKELY (MPFR_CAN_ROUND (x, p - 5, pg, rnd_mode))) break; MPFR_ZIV_NEXT (loop, p); MPFR_GROUP_REPREC_3 (group, p, x, y, z); } MPFR_ZIV_FREE (loop); inex = mpfr_set (g, x, rnd_mode); MPFR_GROUP_CLEAR (group); mpz_clear (T); mpz_clear (P); mpz_clear (Q); return inex; }