/* mpfr_const_euler -- Euler's constant Copyright 2001-2018 Free Software Foundation, Inc. Contributed by Fredrik Johansson. This file is part of the GNU MPFR Library. The GNU MPFR Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. The GNU MPFR Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */ /* The approximation error bound uses Theorem 1 and Remark 2 in http://arxiv.org/pdf/1312.0039v1.pdf */ #define MPFR_NEED_LONGLONG_H #include "mpfr-impl.h" /* Declare the cache */ MPFR_DECL_INIT_CACHE (__gmpfr_cache_const_euler, mpfr_const_euler_internal) /* Set User Interface */ #undef mpfr_const_euler int mpfr_const_euler (mpfr_ptr x, mpfr_rnd_t rnd_mode) { return mpfr_cache (x, __gmpfr_cache_const_euler, rnd_mode); } typedef struct { mpz_t P; mpz_t Q; mpz_t T; mpz_t C; mpz_t D; mpz_t V; } mpfr_const_euler_bs_struct; typedef mpfr_const_euler_bs_struct mpfr_const_euler_bs_t[1]; static void mpfr_const_euler_bs_init (mpfr_const_euler_bs_t s) { mpz_init (s->P); mpz_init (s->Q); mpz_init (s->T); mpz_init (s->C); mpz_init (s->D); mpz_init (s->V); } static void mpfr_const_euler_bs_clear (mpfr_const_euler_bs_t s) { mpz_clear (s->P); mpz_clear (s->Q); mpz_clear (s->T); mpz_clear (s->C); mpz_clear (s->D); mpz_clear (s->V); } static void mpfr_const_euler_bs_1 (mpfr_const_euler_bs_t s, unsigned long n1, unsigned long n2, unsigned long N, int cont) { if (n2 - n1 == 1) { mpz_set_ui (s->P, N); mpz_mul (s->P, s->P, s->P); mpz_set_ui (s->Q, n1 + 1); mpz_mul (s->Q, s->Q, s->Q); mpz_set_ui (s->C, 1); mpz_set_ui (s->D, n1 + 1); mpz_set (s->T, s->P); mpz_set (s->V, s->P); } else { mpfr_const_euler_bs_t L, R; mpz_t t, u, v; unsigned long m = (n1 + n2) / 2; mpfr_const_euler_bs_init (L); mpfr_const_euler_bs_init (R); mpfr_const_euler_bs_1 (L, n1, m, N, 1); mpfr_const_euler_bs_1 (R, m, n2, N, 1); mpz_init (t); mpz_init (u); mpz_init (v); if (cont) mpz_mul (s->P, L->P, R->P); mpz_mul (s->Q, L->Q, R->Q); mpz_mul (s->D, L->D, R->D); /* T = LP RT + RQ LT*/ mpz_mul (t, L->P, R->T); mpz_mul (v, R->Q, L->T); mpz_add (s->T, t, v); /* C = LC RD + RC LD */ if (cont) { mpz_mul (s->C, L->C, R->D); mpz_addmul (s->C, R->C, L->D); } /* V = RD (RQ LV + LC LP RT) + LD LP RV */ mpz_mul (u, L->P, R->V); mpz_mul (u, u, L->D); mpz_mul (v, R->Q, L->V); mpz_addmul (v, t, L->C); mpz_mul (v, v, R->D); mpz_add (s->V, u, v); mpfr_const_euler_bs_clear (L); mpfr_const_euler_bs_clear (R); mpz_clear (t); mpz_clear (u); mpz_clear (v); } } static void mpfr_const_euler_bs_2 (mpz_t P, mpz_t Q, mpz_t T, unsigned long n1, unsigned long n2, unsigned long N, int cont) { if (n2 - n1 == 1) { if (n1 == 0) { mpz_set_ui (P, 1); mpz_set_ui (Q, 4 * N); } else { mpz_set_ui (P, 2 * n1 - 1); mpz_pow_ui (P, P, 3); mpz_set_ui (Q, 32 * n1); mpz_mul_ui (Q, Q, N); mpz_mul_ui (Q, Q, N); } mpz_set (T, P); } else { mpz_t P2, Q2, T2; unsigned long m = (n1 + n2) / 2; mpz_init (P2); mpz_init (Q2); mpz_init (T2); mpfr_const_euler_bs_2 (P, Q, T, n1, m, N, 1); mpfr_const_euler_bs_2 (P2, Q2, T2, m, n2, N, 1); mpz_mul (T, T, Q2); mpz_mul (T2, T2, P); mpz_add (T, T, T2); if (cont) mpz_mul (P, P, P2); mpz_mul (Q, Q, Q2); mpz_clear (P2); mpz_clear (Q2); mpz_clear (T2); } } int mpfr_const_euler_internal (mpfr_t x, mpfr_rnd_t rnd) { mpfr_const_euler_bs_t sum; mpz_t t, u, v; unsigned long n, N; mpfr_prec_t prec, wp, magn; mpfr_t y; int inexact; MPFR_ZIV_DECL (loop); prec = mpfr_get_prec (x); wp = prec + 24; mpfr_init2 (y, wp); mpfr_const_euler_bs_init (sum); mpz_init (t); mpz_init (u); mpz_init (v); MPFR_ZIV_INIT (loop, wp); for (;;) { /* The approximation error is bounded by 24 exp(-8n) when n > 1, which is smaller than 2^-wp if n > (wp + log_2(24)) * (log(2)/8). Note log2(24) < 5 and log(2)/8 < 866434 / 10000000. */ mpz_set_ui (t, wp + 5); mpz_mul_ui (t, t, 866434); mpz_cdiv_q_ui (t, t, 10000000); n = mpz_get_ui (t); /* It is sufficient to take N >= alpha*n + 1 where alpha = 3/LambertW(3/e) = 4.970625759544... */ mpz_set_ui (t, n); mpz_mul_ui (t, t, 4970626); mpz_cdiv_q_ui (t, t, 1000000); mpz_add_ui (t, t, 1); N = mpz_get_ui (t); /* V / ((T + Q) * D) = S / I where S = sum_{k=0}^{N-1} H_k n^(2k) / (k!)^2, I = sum_{k=0}^{N-1} n^(2k) / (k!)^2 */ mpfr_const_euler_bs_1 (sum, 0, N, n, 0); mpz_add (sum->T, sum->T, sum->Q); mpz_mul (t, sum->T, sum->D); mpz_mul_2exp (u, sum->V, wp); mpz_tdiv_q (v, u, t); /* v * 2^-wp = S/I with error < 1 */ /* C / (D * V) = U where U = (1/(4n)) sum_{k=0}^{2n-1} [(2k)!]^3 / ((k!)^4 8^(2k) (2n)^(2k)) */ mpfr_const_euler_bs_2 (sum->C, sum->D, sum->V, 0, 2*n, n, 0); mpz_mul (t, sum->Q, sum->Q); mpz_mul (t, t, sum->V); mpz_mul (u, sum->T, sum->T); mpz_mul (u, u, sum->D); mpz_mul_2exp (t, t, wp); mpz_tdiv_q (t, t, u); /* t * 2^-wp = U/I^2 with error < 1 */ /* gamma = S/I - U/I^2 - log(n) with error at most 2^-wp */ mpz_sub (v, v, t); /* v * 2^-wp now equals gamma + log(n) with error at most 3*2^-wp */ /* log(n) < 2^ceil(log2(n)) */ magn = MPFR_INT_CEIL_LOG2(n); mpfr_set_prec (y, wp + magn); mpfr_set_ui (y, n, MPFR_RNDZ); /* exact */ mpfr_log (y, y, MPFR_RNDZ); /* error < 2^-wp */ mpfr_mul_2ui (y, y, wp, MPFR_RNDZ); mpfr_z_sub (y, v, y, MPFR_RNDZ); mpfr_div_2ui (y, y, wp, MPFR_RNDZ); /* rounding error from the last subtraction < 2^-wp */ /* so y = gamma with error < 5*2^-wp */ if (MPFR_LIKELY (MPFR_CAN_ROUND (y, wp - 3, prec, rnd))) break; MPFR_ZIV_NEXT (loop, wp); } MPFR_ZIV_FREE (loop); inexact = mpfr_set (x, y, rnd); mpfr_clear (y); mpz_clear (t); mpz_clear (u); mpz_clear (v); mpfr_const_euler_bs_clear (sum); return inexact; /* always inexact */ }