/* mpfr_cot - cotangent function. Copyright 2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc. Contributed by the Arenaire and Caramel projects, INRIA. This file is part of the GNU MPFR Library. The GNU MPFR Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. The GNU MPFR Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */ /* the cotangent is defined by cot(x) = 1/tan(x) = cos(x)/sin(x). cot (NaN) = NaN. cot (+Inf) = csc (-Inf) = NaN. cot (+0) = +Inf. cot (-0) = -Inf. */ #define FUNCTION mpfr_cot #define INVERSE mpfr_tan #define ACTION_NAN(y) do { MPFR_SET_NAN(y); MPFR_RET_NAN; } while (1) #define ACTION_INF(y) do { MPFR_SET_NAN(y); MPFR_RET_NAN; } while (1) #define ACTION_ZERO(y,x) do { MPFR_SET_SAME_SIGN(y,x); MPFR_SET_INF(y); \ MPFR_RET(0); } while (1) /* (This analysis is adapted from that for mpfr_coth.) Near x=0, cot(x) = 1/x - x/3 + ..., more precisely we have |cot(x) - 1/x| <= 0.36 for |x| <= 1. The error term has the opposite sign as 1/x, thus |cot(x)| <= |1/x|. Then: (i) either x is a power of two, then 1/x is exactly representable, and as long as 1/2*ulp(1/x) > 0.36, we can conclude; (ii) otherwise assume x has <= n bits, and y has <= n+1 bits, then |y - 1/x| >= 2^(-2n) ufp(y), where ufp means unit in first place. Since |cot(x) - 1/x| <= 0.36, if 2^(-2n) ufp(y) >= 0.72, then |y - cot(x)| >= 2^(-2n-1) ufp(y), and rounding 1/x gives the correct result. If x < 2^E, then y > 2^(-E), thus ufp(y) > 2^(-E-1). A sufficient condition is thus EXP(x) + 1 <= -2 MAX(PREC(x),PREC(Y)). The division can be inexact in case of underflow or overflow; but an underflow is not possible as emin = - emax. The overflow is a real overflow possibly except when |x| = 2^emin. */ #define ACTION_TINY(y,x,r) \ if (MPFR_EXP(x) + 1 <= -2 * (mpfr_exp_t) MAX(MPFR_PREC(x), MPFR_PREC(y))) \ { \ int two2emin; \ int signx = MPFR_SIGN(x); \ MPFR_ASSERTN (MPFR_EMIN_MIN + MPFR_EMAX_MAX == 0); \ if ((two2emin = mpfr_get_exp (x) == __gmpfr_emin + 1 && \ mpfr_powerof2_raw (x))) \ { \ /* Case |x| = 2^emin. 1/x is not representable; so, compute \ 1/(2x) instead (exact), and correct the result later. */ \ mpfr_set_si_2exp (y, signx, __gmpfr_emax, MPFR_RNDN); \ inexact = 0; \ } \ else \ inexact = mpfr_ui_div (y, 1, x, r); \ if (inexact == 0) /* x is a power of two */ \ { /* result always 1/x, except when rounding to zero */ \ if (rnd_mode == MPFR_RNDA) \ rnd_mode = (signx > 0) ? MPFR_RNDU : MPFR_RNDD; \ if (rnd_mode == MPFR_RNDU || (rnd_mode == MPFR_RNDZ && signx < 0)) \ { \ if (signx < 0) \ mpfr_nextabove (y); /* -2^k + epsilon */ \ inexact = 1; \ } \ else if (rnd_mode == MPFR_RNDD || rnd_mode == MPFR_RNDZ) \ { \ if (signx > 0) \ mpfr_nextbelow (y); /* 2^k - epsilon */ \ inexact = -1; \ } \ else /* round to nearest */ \ inexact = signx; \ if (two2emin) \ mpfr_mul_2ui (y, y, 1, r); /* overflow in MPFR_RNDN */ \ } \ /* Underflow is not possible with emin = - emax, but we cannot */ \ /* add an assert as the underflow flag could have already been */ \ /* set before the call to mpfr_cot. */ \ MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, __gmpfr_flags); \ goto end; \ } #include "gen_inverse.h"