/* mpfr_li2 -- Dilogarithm. Copyright 2007-2017 Free Software Foundation, Inc. Contributed by the AriC and Caramba projects, INRIA. This file is part of the GNU MPFR Library. The GNU MPFR Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. The GNU MPFR Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */ #define MPFR_NEED_LONGLONG_H #include "mpfr-impl.h" /* Compute the alternating series s = S(z) = \sum_{k=0}^infty B_{2k} (z))^{2k+1} / (2k+1)! with 0 < z <= log(2) to the precision of s rounded in the direction rnd_mode. Return the maximum index of the truncature which is useful for determinating the relative error. */ static int li2_series (mpfr_t sum, mpfr_srcptr z, mpfr_rnd_t rnd_mode) { int i; mpfr_t s, u, v, w; mpfr_prec_t sump, p; mpfr_exp_t se, err; MPFR_ZIV_DECL (loop); /* The series converges for |z| < 2 pi, but in mpfr_li2 the argument is reduced so that 0 < z <= log(2). Here is additionnal check that z is (nearly) correct */ MPFR_ASSERTD (MPFR_IS_STRICTPOS (z)); MPFR_ASSERTD (mpfr_cmp_ui_2exp (z, 89, -7) <= 0); /* z <= 0.6953125 */ sump = MPFR_PREC (sum); /* target precision */ p = sump + MPFR_INT_CEIL_LOG2 (sump) + 4; /* the working precision */ mpfr_init2 (s, p); mpfr_init2 (u, p); mpfr_init2 (v, p); mpfr_init2 (w, p); MPFR_ZIV_INIT (loop, p); for (;;) { mpfr_sqr (u, z, MPFR_RNDU); mpfr_set (v, z, MPFR_RNDU); mpfr_set (s, z, MPFR_RNDU); se = MPFR_GET_EXP (s); err = 0; for (i = 1;; i++) { mpfr_mul (v, u, v, MPFR_RNDU); mpfr_div_ui (v, v, 2 * i, MPFR_RNDU); mpfr_div_ui (v, v, 2 * i, MPFR_RNDU); mpfr_div_ui (v, v, 2 * i + 1, MPFR_RNDU); mpfr_div_ui (v, v, 2 * i + 1, MPFR_RNDU); /* here, v_2i = v_{2i-2} / (2i * (2i+1))^2 */ mpfr_mul_z (w, v, mpfr_bernoulli_cache(i), MPFR_RNDN); /* here, w_2i = v_2i * B_2i * (2i+1)! with error(w_2i) < 2^(5 * i + 8) ulp(w_2i) (see algorithms.tex) */ mpfr_add (s, s, w, MPFR_RNDN); err = MAX (err + se, 5 * i + 8 + MPFR_GET_EXP (w)) - MPFR_GET_EXP (s); err = 2 + MAX (-1, err); se = MPFR_GET_EXP (s); if (MPFR_GET_EXP (w) <= se - (mpfr_exp_t) p) break; } /* the previous value of err is the rounding error, the truncation error is less than EXP(z) - 6 * i - 5 (see algorithms.tex) */ err = MAX (err, MPFR_GET_EXP (z) - 6 * i - 5) + 1; if (MPFR_CAN_ROUND (s, (mpfr_exp_t) p - err, sump, rnd_mode)) break; MPFR_ZIV_NEXT (loop, p); mpfr_set_prec (s, p); mpfr_set_prec (u, p); mpfr_set_prec (v, p); mpfr_set_prec (w, p); } MPFR_ZIV_FREE (loop); mpfr_set (sum, s, rnd_mode); mpfr_clears (s, u, v, w, (mpfr_ptr) 0); /* Let K be the returned value. 1. As we compute an alternating series, the truncation error has the same sign as the next term w_{K+2} which is positive iff K%4 == 0. 2. Assume that error(z) <= (1+t) z', where z' is the actual value, then error(s) <= 2 * (K+1) * t (see algorithms.tex). */ return 2 * i; } /* try asymptotic expansion when x is large and positive: Li2(x) = -log(x)^2/2 + Pi^2/3 - 1/x + O(1/x^2). More precisely for x >= 2 we have for g(x) = -log(x)^2/2 + Pi^2/3: -2 <= x * (Li2(x) - g(x)) <= -1 thus |Li2(x) - g(x)| <= 2/x. Assumes x >= 38, which ensures log(x)^2/2 >= 2*Pi^2/3, and g(x) <= -3.3. Return 0 if asymptotic expansion failed (unable to round), otherwise returns 1 for RNDF, and correct ternary value otherwise. */ static int mpfr_li2_asympt_pos (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd_mode) { mpfr_t g, h; mpfr_prec_t w = MPFR_PREC (y) + 20; int inex = 0; MPFR_ASSERTN (mpfr_cmp_ui (x, 38) >= 0); mpfr_init2 (g, w); mpfr_init2 (h, w); mpfr_log (g, x, MPFR_RNDN); /* rel. error <= |(1 + theta) - 1| */ mpfr_sqr (g, g, MPFR_RNDN); /* rel. error <= |(1 + theta)^3 - 1| <= 2^(2-w) */ mpfr_div_2ui (g, g, 1, MPFR_RNDN); /* rel. error <= 2^(2-w) */ mpfr_const_pi (h, MPFR_RNDN); /* error <= 2^(1-w) */ mpfr_sqr (h, h, MPFR_RNDN); /* rel. error <= 2^(2-w) */ mpfr_div_ui (h, h, 3, MPFR_RNDN); /* rel. error <= |(1 + theta)^4 - 1| <= 5 * 2^(-w) */ /* since x is chosen such that log(x)^2/2 >= 2 * (Pi^2/3), we should have g >= 2*h, thus |g-h| >= |h|, and the relative error on g is at most multiplied by 2 in the difference, and that by h is unchanged. */ MPFR_ASSERTN (MPFR_EXP (g) > MPFR_EXP (h)); mpfr_sub (g, h, g, MPFR_RNDN); /* err <= ulp(g)/2 + g*2^(3-w) + g*5*2^(-w) <= ulp(g) * (1/2 + 8 + 5) < 14 ulp(g). If in addition 2/x <= 2 ulp(g), i.e., 1/x <= ulp(g), then the total error is bounded by 16 ulp(g). */ if ((MPFR_EXP (x) >= (mpfr_exp_t) w - MPFR_EXP (g)) && MPFR_CAN_ROUND (g, w - 4, MPFR_PREC (y), rnd_mode)) { inex = mpfr_set (y, g, rnd_mode); if (rnd_mode == MPFR_RNDF) inex = 1; } mpfr_clear (g); mpfr_clear (h); return inex; } /* try asymptotic expansion when x is large and negative: Li2(x) = -log(-x)^2/2 - Pi^2/6 - 1/x + O(1/x^2). More precisely for x <= -2 we have for g(x) = -log(-x)^2/2 - Pi^2/6: |Li2(x) - g(x)| <= 1/|x|. Assumes x <= -7, which ensures |log(-x)^2/2| >= Pi^2/6, and g(x) <= -3.5. Return 0 if asymptotic expansion failed (unable to round), otherwise returns 1 for RNDF, and correct ternary value otherwise. */ static int mpfr_li2_asympt_neg (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd_mode) { mpfr_t g, h; mpfr_prec_t w = MPFR_PREC (y) + 20; int inex = 0; MPFR_ASSERTN (mpfr_cmp_si (x, -7) <= 0); mpfr_init2 (g, w); mpfr_init2 (h, w); mpfr_neg (g, x, MPFR_RNDN); mpfr_log (g, g, MPFR_RNDN); /* rel. error <= |(1 + theta) - 1| */ mpfr_sqr (g, g, MPFR_RNDN); /* rel. error <= |(1 + theta)^3 - 1| <= 2^(2-w) */ mpfr_div_2ui (g, g, 1, MPFR_RNDN); /* rel. error <= 2^(2-w) */ mpfr_const_pi (h, MPFR_RNDN); /* error <= 2^(1-w) */ mpfr_sqr (h, h, MPFR_RNDN); /* rel. error <= 2^(2-w) */ mpfr_div_ui (h, h, 6, MPFR_RNDN); /* rel. error <= |(1 + theta)^4 - 1| <= 5 * 2^(-w) */ MPFR_ASSERTN (MPFR_EXP (g) >= MPFR_EXP (h)); mpfr_add (g, g, h, MPFR_RNDN); /* err <= ulp(g)/2 + g*2^(2-w) + g*5*2^(-w) <= ulp(g) * (1/2 + 4 + 5) < 10 ulp(g). If in addition |1/x| <= 4 ulp(g), then the total error is bounded by 16 ulp(g). */ if ((MPFR_EXP (x) >= (mpfr_exp_t) (w - 2) - MPFR_EXP (g)) && MPFR_CAN_ROUND (g, w - 4, MPFR_PREC (y), rnd_mode)) { inex = mpfr_neg (y, g, rnd_mode); if (rnd_mode == MPFR_RNDF) inex = 1; } mpfr_clear (g); mpfr_clear (h); return inex; } /* Compute the real part of the dilogarithm defined by Li2(x) = -\Int_{t=0}^x log(1-t)/t dt */ int mpfr_li2 (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd_mode) { int inexact; mpfr_exp_t err; mpfr_prec_t yp, m; MPFR_ZIV_DECL (loop); MPFR_SAVE_EXPO_DECL (expo); MPFR_LOG_FUNC (("x[%Pu]=%.*Rg rnd=%d", mpfr_get_prec (x), mpfr_log_prec, x, rnd_mode), ("y[%Pu]=%.*Rg inexact=%d", mpfr_get_prec (y), mpfr_log_prec, y, inexact)); if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x))) { if (MPFR_IS_NAN (x)) { MPFR_SET_NAN (y); MPFR_RET_NAN; } else if (MPFR_IS_INF (x)) { MPFR_SET_NEG (y); MPFR_SET_INF (y); MPFR_RET (0); } else /* x is zero */ { MPFR_ASSERTD (MPFR_IS_ZERO (x)); MPFR_SET_SAME_SIGN (y, x); MPFR_SET_ZERO (y); MPFR_RET (0); } } /* Li2(x) = x + x^2/4 + x^3/9 + ..., more precisely for 0 < x <= 1/2 we have |Li2(x) - x| < x^2/2 <= 2^(2EXP(x)-1) and for -1/2 <= x < 0 we have |Li2(x) - x| < x^2/4 <= 2^(2EXP(x)-2) */ if (MPFR_IS_POS (x)) MPFR_FAST_COMPUTE_IF_SMALL_INPUT (y, x, -MPFR_GET_EXP (x), 1, 1, rnd_mode, {}); else MPFR_FAST_COMPUTE_IF_SMALL_INPUT (y, x, -MPFR_GET_EXP (x), 2, 0, rnd_mode, {}); MPFR_SAVE_EXPO_MARK (expo); yp = MPFR_PREC (y); m = yp + MPFR_INT_CEIL_LOG2 (yp) + 13; if (MPFR_LIKELY ((mpfr_cmp_ui (x, 0) > 0) && (mpfr_cmp_ui_2exp (x, 1, -1) <= 0))) /* 0 < x <= 1/2: Li2(x) = S(-log(1-x))-log^2(1-x)/4 */ { mpfr_t s, u; mpfr_exp_t expo_l; int k; mpfr_init2 (u, m); mpfr_init2 (s, m); MPFR_ZIV_INIT (loop, m); for (;;) { mpfr_ui_sub (u, 1, x, MPFR_RNDN); mpfr_log (u, u, MPFR_RNDU); if (MPFR_IS_ZERO(u)) goto next_m; mpfr_neg (u, u, MPFR_RNDN); /* u = -log(1-x) */ expo_l = MPFR_GET_EXP (u); k = li2_series (s, u, MPFR_RNDU); err = 1 + MPFR_INT_CEIL_LOG2 (k + 1); mpfr_sqr (u, u, MPFR_RNDU); mpfr_div_2ui (u, u, 2, MPFR_RNDU); /* u = log^2(1-x) / 4 */ mpfr_sub (s, s, u, MPFR_RNDN); /* error(s) <= (0.5 + 2^(d-EXP(s)) + 2^(3 + MAX(1, - expo_l) - EXP(s))) ulp(s) */ err = MAX (err, MAX (1, - expo_l) - 1) - MPFR_GET_EXP (s); err = 2 + MAX (-1, err); if (MPFR_CAN_ROUND (s, (mpfr_exp_t) m - err, yp, rnd_mode)) break; next_m: MPFR_ZIV_NEXT (loop, m); mpfr_set_prec (u, m); mpfr_set_prec (s, m); } MPFR_ZIV_FREE (loop); inexact = mpfr_set (y, s, rnd_mode); mpfr_clear (u); mpfr_clear (s); MPFR_SAVE_EXPO_FREE (expo); return mpfr_check_range (y, inexact, rnd_mode); } else if (!mpfr_cmp_ui (x, 1)) /* Li2(1)= pi^2 / 6 */ { mpfr_t u; mpfr_init2 (u, m); MPFR_ZIV_INIT (loop, m); for (;;) { mpfr_const_pi (u, MPFR_RNDU); mpfr_sqr (u, u, MPFR_RNDN); mpfr_div_ui (u, u, 6, MPFR_RNDN); err = m - 4; /* error(u) <= 19/2 ulp(u) */ if (MPFR_CAN_ROUND (u, err, yp, rnd_mode)) break; MPFR_ZIV_NEXT (loop, m); mpfr_set_prec (u, m); } MPFR_ZIV_FREE (loop); inexact = mpfr_set (y, u, rnd_mode); mpfr_clear (u); MPFR_SAVE_EXPO_FREE (expo); return mpfr_check_range (y, inexact, rnd_mode); } else if (mpfr_cmp_ui (x, 2) >= 0) /* x >= 2: Li2(x) = -S(-log(1-1/x))-log^2(x)/2+log^2(1-1/x)/4+pi^2/3 */ { int k; mpfr_exp_t expo_l; mpfr_t s, u, xx; if (mpfr_cmp_ui (x, 38) >= 0) { inexact = mpfr_li2_asympt_pos (y, x, rnd_mode); if (inexact != 0) goto end_of_case_gt2; } mpfr_init2 (u, m); mpfr_init2 (s, m); mpfr_init2 (xx, m); MPFR_ZIV_INIT (loop, m); for (;;) { mpfr_ui_div (xx, 1, x, MPFR_RNDN); mpfr_neg (xx, xx, MPFR_RNDN); mpfr_log1p (u, xx, MPFR_RNDD); mpfr_neg (u, u, MPFR_RNDU); /* u = -log(1-1/x) */ expo_l = MPFR_GET_EXP (u); k = li2_series (s, u, MPFR_RNDN); mpfr_neg (s, s, MPFR_RNDN); err = MPFR_INT_CEIL_LOG2 (k + 1) + 1; /* error(s) <= 2^err ulp(s) */ mpfr_sqr (u, u, MPFR_RNDN); mpfr_div_2ui (u, u, 2, MPFR_RNDN); /* u= log^2(1-1/x)/4 */ mpfr_add (s, s, u, MPFR_RNDN); err = MAX (err, 3 + MAX (1, -expo_l) + MPFR_GET_EXP (u)) - MPFR_GET_EXP (s); err = 2 + MAX (-1, err); /* error(s) <= 2^err ulp(s) */ err += MPFR_GET_EXP (s); mpfr_log (u, x, MPFR_RNDU); mpfr_sqr (u, u, MPFR_RNDN); mpfr_div_2ui (u, u, 1, MPFR_RNDN); /* u = log^2(x)/2 */ mpfr_sub (s, s, u, MPFR_RNDN); err = MAX (err, 3 + MPFR_GET_EXP (u)) - MPFR_GET_EXP (s); err = 2 + MAX (-1, err); /* error(s) <= 2^err ulp(s) */ err += MPFR_GET_EXP (s); mpfr_const_pi (u, MPFR_RNDU); mpfr_sqr (u, u, MPFR_RNDN); mpfr_div_ui (u, u, 3, MPFR_RNDN); /* u = pi^2/3 */ mpfr_add (s, s, u, MPFR_RNDN); err = MAX (err, 2) - MPFR_GET_EXP (s); err = 2 + MAX (-1, err); /* error(s) <= 2^err ulp(s) */ if (MPFR_CAN_ROUND (s, (mpfr_exp_t) m - err, yp, rnd_mode)) break; MPFR_ZIV_NEXT (loop, m); mpfr_set_prec (u, m); mpfr_set_prec (s, m); mpfr_set_prec (xx, m); } MPFR_ZIV_FREE (loop); inexact = mpfr_set (y, s, rnd_mode); mpfr_clears (s, u, xx, (mpfr_ptr) 0); end_of_case_gt2: MPFR_SAVE_EXPO_FREE (expo); return mpfr_check_range (y, inexact, rnd_mode); } else if (mpfr_cmp_ui (x, 1) > 0) /* 2 > x > 1: Li2(x) = S(log(x))+log^2(x)/4-log(x)log(x-1)+pi^2/6 */ { int k; mpfr_exp_t e1, e2; mpfr_t s, u, v, xx; mpfr_init2 (s, m); mpfr_init2 (u, m); mpfr_init2 (v, m); mpfr_init2 (xx, m); MPFR_ZIV_INIT (loop, m); for (;;) { mpfr_log (v, x, MPFR_RNDU); k = li2_series (s, v, MPFR_RNDN); e1 = MPFR_GET_EXP (s); mpfr_sqr (u, v, MPFR_RNDN); mpfr_div_2ui (u, u, 2, MPFR_RNDN); /* u = log^2(x)/4 */ mpfr_add (s, s, u, MPFR_RNDN); mpfr_sub_ui (xx, x, 1, MPFR_RNDN); mpfr_log (u, xx, MPFR_RNDU); e2 = MPFR_GET_EXP (u); mpfr_mul (u, v, u, MPFR_RNDN); /* u = log(x) * log(x-1) */ mpfr_sub (s, s, u, MPFR_RNDN); mpfr_const_pi (u, MPFR_RNDU); mpfr_sqr (u, u, MPFR_RNDN); mpfr_div_ui (u, u, 6, MPFR_RNDN); /* u = pi^2/6 */ mpfr_add (s, s, u, MPFR_RNDN); /* error(s) <= (31 + (k+1) * 2^(1-e1) + 2^(1-e2)) ulp(s) see algorithms.tex */ err = MAX (MPFR_INT_CEIL_LOG2 (k + 1) + 1 - e1, 1 - e2); err = 2 + MAX (5, err); if (MPFR_CAN_ROUND (s, (mpfr_exp_t) m - err, yp, rnd_mode)) break; MPFR_ZIV_NEXT (loop, m); mpfr_set_prec (s, m); mpfr_set_prec (u, m); mpfr_set_prec (v, m); mpfr_set_prec (xx, m); } MPFR_ZIV_FREE (loop); inexact = mpfr_set (y, s, rnd_mode); mpfr_clears (s, u, v, xx, (mpfr_ptr) 0); MPFR_SAVE_EXPO_FREE (expo); return mpfr_check_range (y, inexact, rnd_mode); } else if (mpfr_cmp_ui_2exp (x, 1, -1) > 0) /* 1/2 < x < 1 */ /* 1 > x > 1/2: Li2(x) = -S(-log(x))+log^2(x)/4-log(x)log(1-x)+pi^2/6 */ { int k; mpfr_t s, u, v, xx; mpfr_init2 (s, m); mpfr_init2 (u, m); mpfr_init2 (v, m); mpfr_init2 (xx, m); MPFR_ZIV_INIT (loop, m); for (;;) { mpfr_log (u, x, MPFR_RNDD); mpfr_neg (u, u, MPFR_RNDN); k = li2_series (s, u, MPFR_RNDN); mpfr_neg (s, s, MPFR_RNDN); err = 1 + MPFR_INT_CEIL_LOG2 (k + 1) - MPFR_GET_EXP (s); mpfr_ui_sub (xx, 1, x, MPFR_RNDN); mpfr_log (v, xx, MPFR_RNDU); mpfr_mul (v, v, u, MPFR_RNDN); /* v = - log(x) * log(1-x) */ mpfr_add (s, s, v, MPFR_RNDN); err = MAX (err, 1 - MPFR_GET_EXP (v)); err = 2 + MAX (3, err) - MPFR_GET_EXP (s); mpfr_sqr (u, u, MPFR_RNDN); mpfr_div_2ui (u, u, 2, MPFR_RNDN); /* u = log^2(x)/4 */ mpfr_add (s, s, u, MPFR_RNDN); err = MAX (err, 2 + MPFR_GET_EXP (u)) - MPFR_GET_EXP (s); err = 2 + MAX (-1, err) + MPFR_GET_EXP (s); mpfr_const_pi (u, MPFR_RNDU); mpfr_sqr (u, u, MPFR_RNDN); mpfr_div_ui (u, u, 6, MPFR_RNDN); /* u = pi^2/6 */ mpfr_add (s, s, u, MPFR_RNDN); err = MAX (err, 3) - MPFR_GET_EXP (s); err = 2 + MAX (-1, err); if (MPFR_CAN_ROUND (s, (mpfr_exp_t) m - err, yp, rnd_mode)) break; MPFR_ZIV_NEXT (loop, m); mpfr_set_prec (s, m); mpfr_set_prec (u, m); mpfr_set_prec (v, m); mpfr_set_prec (xx, m); } MPFR_ZIV_FREE (loop); inexact = mpfr_set (y, s, rnd_mode); mpfr_clears (s, u, v, xx, (mpfr_ptr) 0); MPFR_SAVE_EXPO_FREE (expo); return mpfr_check_range (y, inexact, rnd_mode); } else if (mpfr_cmp_si (x, -1) >= 0) /* 0 > x >= -1: Li2(x) = -S(log(1-x))-log^2(1-x)/4 */ { int k; mpfr_exp_t expo_l; mpfr_t s, u, xx; mpfr_init2 (s, m); mpfr_init2 (u, m); mpfr_init2 (xx, m); MPFR_ZIV_INIT (loop, m); for (;;) { mpfr_neg (xx, x, MPFR_RNDN); mpfr_log1p (u, xx, MPFR_RNDN); k = li2_series (s, u, MPFR_RNDN); mpfr_neg (s, s, MPFR_RNDN); expo_l = MPFR_GET_EXP (u); err = 1 + MPFR_INT_CEIL_LOG2 (k + 1) - MPFR_GET_EXP (s); mpfr_sqr (u, u, MPFR_RNDN); mpfr_div_2ui (u, u, 2, MPFR_RNDN); /* u = log^2(1-x)/4 */ mpfr_sub (s, s, u, MPFR_RNDN); err = MAX (err, - expo_l); err = 2 + MAX (err, 3); if (MPFR_CAN_ROUND (s, (mpfr_exp_t) m - err, yp, rnd_mode)) break; MPFR_ZIV_NEXT (loop, m); mpfr_set_prec (s, m); mpfr_set_prec (u, m); mpfr_set_prec (xx, m); } MPFR_ZIV_FREE (loop); inexact = mpfr_set (y, s, rnd_mode); mpfr_clears (s, u, xx, (mpfr_ptr) 0); MPFR_SAVE_EXPO_FREE (expo); return mpfr_check_range (y, inexact, rnd_mode); } else /* x < -1: Li2(x) = S(log(1-1/x))-log^2(-x)/4-log(1-x)log(-x)/2+log^2(1-x)/4-pi^2/6 */ { int k; mpfr_t s, u, v, w, xx; if (mpfr_cmp_si (x, -7) <= 0) { inexact = mpfr_li2_asympt_neg (y, x, rnd_mode); if (inexact != 0) goto end_of_case_ltm1; } mpfr_init2 (s, m); mpfr_init2 (u, m); mpfr_init2 (v, m); mpfr_init2 (w, m); mpfr_init2 (xx, m); MPFR_ZIV_INIT (loop, m); for (;;) { mpfr_ui_div (xx, 1, x, MPFR_RNDN); mpfr_neg (xx, xx, MPFR_RNDN); mpfr_log1p (u, xx, MPFR_RNDN); k = li2_series (s, u, MPFR_RNDN); mpfr_ui_sub (xx, 1, x, MPFR_RNDN); mpfr_log (u, xx, MPFR_RNDU); mpfr_neg (xx, x, MPFR_RNDN); mpfr_log (v, xx, MPFR_RNDU); mpfr_mul (w, v, u, MPFR_RNDN); mpfr_div_2ui (w, w, 1, MPFR_RNDN); /* w = log(-x) * log(1-x) / 2 */ mpfr_sub (s, s, w, MPFR_RNDN); err = 1 + MAX (3, MPFR_INT_CEIL_LOG2 (k+1) + 1 - MPFR_GET_EXP (s)) + MPFR_GET_EXP (s); mpfr_sqr (w, v, MPFR_RNDN); mpfr_div_2ui (w, w, 2, MPFR_RNDN); /* w = log^2(-x) / 4 */ mpfr_sub (s, s, w, MPFR_RNDN); err = MAX (err, 3 + MPFR_GET_EXP(w)) - MPFR_GET_EXP (s); err = 2 + MAX (-1, err) + MPFR_GET_EXP (s); mpfr_sqr (w, u, MPFR_RNDN); mpfr_div_2ui (w, w, 2, MPFR_RNDN); /* w = log^2(1-x) / 4 */ mpfr_add (s, s, w, MPFR_RNDN); err = MAX (err, 3 + MPFR_GET_EXP (w)) - MPFR_GET_EXP (s); err = 2 + MAX (-1, err) + MPFR_GET_EXP (s); mpfr_const_pi (w, MPFR_RNDU); mpfr_sqr (w, w, MPFR_RNDN); mpfr_div_ui (w, w, 6, MPFR_RNDN); /* w = pi^2 / 6 */ mpfr_sub (s, s, w, MPFR_RNDN); err = MAX (err, 3) - MPFR_GET_EXP (s); err = 2 + MAX (-1, err) + MPFR_GET_EXP (s); if (MPFR_CAN_ROUND (s, (mpfr_exp_t) m - err, yp, rnd_mode)) break; MPFR_ZIV_NEXT (loop, m); mpfr_set_prec (s, m); mpfr_set_prec (u, m); mpfr_set_prec (v, m); mpfr_set_prec (w, m); mpfr_set_prec (xx, m); } MPFR_ZIV_FREE (loop); inexact = mpfr_set (y, s, rnd_mode); mpfr_clears (s, u, v, w, xx, (mpfr_ptr) 0); end_of_case_ltm1: MPFR_SAVE_EXPO_FREE (expo); return mpfr_check_range (y, inexact, rnd_mode); } MPFR_RET_NEVER_GO_HERE (); }