/* Sum -- efficiently sum a list of floating-point numbers Copyright 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc. Contributed by the Arenaire and Cacao projects, INRIA. This file is part of the MPFR Library. The MPFR Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The MPFR Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the MPFR Library; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */ #define MPFR_NEED_LONGLONG_H #include "mpfr-impl.h" /* I would really like to use "mpfr_srcptr const []" but the norm is buggy: it doesn't automaticaly cast a "mpfr_ptr []" to "mpfr_srcptr const []" if necessary. So the choice are: mpfr_s ** : ok mpfr_s *const* : ok mpfr_s **const : ok mpfr_s *const*const : ok const mpfr_s *const* : no const mpfr_s **const : no const mpfr_s *const*const: no */ static void heap_sort (mpfr_srcptr *const, unsigned long, mpfr_srcptr *); static void count_sort (mpfr_srcptr *const, unsigned long, mpfr_srcptr *, mp_exp_t, mpfr_uexp_t); /* Either sort the tab in perm and returns 0 Or returns 1 for +INF, -1 for -INF and 2 for NAN */ int mpfr_sum_sort (mpfr_srcptr *const tab, unsigned long n, mpfr_srcptr *perm) { mp_exp_t min, max; mpfr_uexp_t exp_num; unsigned long i; int sign_inf; sign_inf = 0; min = MPFR_EMIN_MAX; max = MPFR_EMAX_MIN; for (i = 0; i < n; i++) { if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (tab[i]))) { if (MPFR_IS_NAN (tab[i])) return 2; /* Return NAN code */ else if (MPFR_IS_INF (tab[i])) { if (sign_inf == 0) /* No previous INF */ sign_inf = MPFR_SIGN (tab[i]); else if (sign_inf != MPFR_SIGN (tab[i])) return 2; /* Return NAN */ } } else { if (MPFR_GET_EXP (tab[i]) < min) min = MPFR_GET_EXP(tab[i]); if (MPFR_GET_EXP (tab[i]) > max) max = MPFR_GET_EXP(tab[i]); } } if (MPFR_UNLIKELY (sign_inf != 0)) return sign_inf; exp_num = max - min + 1; /* FIXME : better test */ if (exp_num > n * MPFR_INT_CEIL_LOG2 (n)) heap_sort (tab, n, perm); else count_sort (tab, n, perm, min, exp_num); return 0; } #define GET_EXP1(x) (MPFR_IS_ZERO (x) ? min : MPFR_GET_EXP (x)) /* Performs a count sort of the entries */ static void count_sort (mpfr_srcptr *const tab, unsigned long n, mpfr_srcptr *perm, mp_exp_t min, mpfr_uexp_t exp_num) { unsigned long *account; unsigned long target_rank, i; MPFR_TMP_DECL(marker); /* Reserve a place for potential 0 (with EXP min-1) If there is no zero, we only lose one unused entry */ min--; exp_num++; /* Performs a counting sort of the entries */ MPFR_TMP_MARK (marker); account = (unsigned long *) MPFR_TMP_ALLOC (exp_num * sizeof * account); for (i = 0; i < exp_num; i++) account[i] = 0; for (i = 0; i < n; i++) account[GET_EXP1 (tab[i]) - min]++; for (i = exp_num - 1; i >= 1; i--) account[i - 1] += account[i]; for (i = 0; i < n; i++) { target_rank = --account[GET_EXP1 (tab[i]) - min]; perm[target_rank] = tab[i]; } MPFR_TMP_FREE (marker); } #define GET_EXP2(x) (MPFR_IS_ZERO (x) ? MPFR_EMIN_MIN : MPFR_GET_EXP (x)) /* Performs a heap sort of the entries */ static void heap_sort (mpfr_srcptr *const tab, unsigned long n, mpfr_srcptr *perm) { unsigned long dernier_traite; unsigned long i, pere; mpfr_srcptr tmp; unsigned long fils_gauche, fils_droit, fils_indigne; /* Reminder of a heap structure : node(i) has for left son node(2i +1) and right son node(2i) and father(node(i)) = node((i - 1) / 2) */ /* initialize the permutation to identity */ for (i = 0; i < n; i++) perm[i] = tab[i]; /* insertion phase */ for (dernier_traite = 1; dernier_traite < n; dernier_traite++) { i = dernier_traite; while (i > 0) { pere = (i - 1) / 2; if (GET_EXP2 (perm[pere]) > GET_EXP2 (perm[i])) { tmp = perm[pere]; perm[pere] = perm[i]; perm[i] = tmp; i = pere; } else break; } } /* extraction phase */ for (dernier_traite = n - 1; dernier_traite > 0; dernier_traite--) { tmp = perm[0]; perm[0] = perm[dernier_traite]; perm[dernier_traite] = tmp; i = 0; while (1) { fils_gauche = 2 * i + 1; fils_droit = fils_gauche + 1; if (fils_gauche < dernier_traite) { if (fils_droit < dernier_traite) { if (GET_EXP2(perm[fils_droit]) < GET_EXP2(perm[fils_gauche])) fils_indigne = fils_droit; else fils_indigne = fils_gauche; if (GET_EXP2 (perm[i]) > GET_EXP2 (perm[fils_indigne])) { tmp = perm[i]; perm[i] = perm[fils_indigne]; perm[fils_indigne] = tmp; i = fils_indigne; } else break; } else /* on a un fils gauche, pas de fils droit */ { if (GET_EXP2 (perm[i]) > GET_EXP2 (perm[fils_gauche])) { tmp = perm[i]; perm[i] = perm[fils_gauche]; perm[fils_gauche] = tmp; } break; } } else /* on n'a pas de fils */ break; } } } /* Sum a list of float with order given by permutation perm, * intermediate size set to F. * Internal use function. */ static int sum_once (mpfr_ptr ret, mpfr_srcptr *const tab, unsigned long n, mp_prec_t F) { mpfr_t sum; unsigned long i; int error_trap; MPFR_ASSERTD (n >= 2); mpfr_init2 (sum, F); error_trap = mpfr_set (sum, tab[0], GMP_RNDN); for (i = 1; i < n - 1; i++) { MPFR_ASSERTD (!MPFR_IS_NAN (sum) && !MPFR_IS_INF (sum)); error_trap |= mpfr_add (sum, sum, tab[i], GMP_RNDN); } error_trap |= mpfr_add (ret, sum, tab[n - 1], GMP_RNDN); mpfr_clear (sum); return error_trap; } /* Sum a list of floating-point numbers. * FIXME : add reference to Demmel-Hida's paper. */ int mpfr_sum (mpfr_ptr ret, mpfr_ptr *const tab_p, unsigned long n, mp_rnd_t rnd) { mpfr_t cur_sum; mp_prec_t prec; mpfr_srcptr *perm, *const tab = (mpfr_srcptr *const) tab_p; int k, error_trap; MPFR_ZIV_DECL (loop); MPFR_SAVE_EXPO_DECL (expo); MPFR_TMP_DECL (marker); if (MPFR_UNLIKELY (n <= 1)) { if (n < 1) { MPFR_SET_ZERO (ret); MPFR_SET_POS (ret); return 0; } else return mpfr_set (ret, tab[0], rnd); } /* Sort and treat special cases */ MPFR_TMP_MARK (marker); perm = (mpfr_srcptr *) MPFR_TMP_ALLOC (n * sizeof *perm); error_trap = mpfr_sum_sort (tab, n, perm); /* Check if there was a NAN or a INF */ if (MPFR_UNLIKELY (error_trap != 0)) { MPFR_TMP_FREE (marker); if (error_trap == 2) { MPFR_SET_NAN (ret); MPFR_RET_NAN; } MPFR_SET_INF (ret); MPFR_SET_SIGN (ret, error_trap); MPFR_RET (0); } /* Initial precision */ prec = MAX (MPFR_PREC (tab[0]), MPFR_PREC (ret)); k = MPFR_INT_CEIL_LOG2 (n) + 1; prec += k + 2; mpfr_init2 (cur_sum, prec); /* Ziv Loop */ MPFR_SAVE_EXPO_MARK (expo); MPFR_ZIV_INIT (loop, prec); for (;;) { error_trap = sum_once (cur_sum, perm, n, prec + k); if (MPFR_LIKELY (error_trap == 0 || (!MPFR_IS_ZERO (cur_sum) && mpfr_can_round (cur_sum, MPFR_GET_EXP (cur_sum) - prec + 2, GMP_RNDN, rnd, MPFR_PREC (ret))))) break; MPFR_ZIV_NEXT (loop, prec); mpfr_set_prec (cur_sum, prec); } MPFR_ZIV_FREE (loop); MPFR_TMP_FREE (marker); error_trap |= mpfr_set (ret, cur_sum, rnd); mpfr_clear (cur_sum); MPFR_SAVE_EXPO_FREE (expo); error_trap |= mpfr_check_range (ret, 0, rnd); return error_trap; /* It doesn't return the ternary value */ } /* __END__ */