/* mpfr_zeta -- compute the Riemann Zeta function Copyright 2003, 2004, 2005, 2006 Free Software Foundation, Inc. Contributed by Jean-Luc Re'my and the Spaces project, INRIA Lorraine. This file is part of the MPFR Library. The MPFR Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The MPFR Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the MPFR Library; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */ #include /* For CHAR_BIT */ #define MPFR_NEED_LONGLONG_H #include "mpfr-impl.h" /* Parameters: s - the input floating-point number n, p - parameters from the algorithm tc - an array of p floating-point numbers tc[1]..tc[p] Output: b is the result, i.e. sum(tc[i]*product((s+2j)*(s+2j-1)/n^2,j=1..i-1), i=1..p)*s*n^(-s-1) */ static void mpfr_zeta_part_b (mpfr_t b, mpfr_srcptr s, int n, int p, mpfr_t *tc) { mpfr_t s1, d, u; unsigned long n2; int l, t; MPFR_GROUP_DECL (group); if (p == 0) { MPFR_SET_ZERO (b); MPFR_SET_POS (b); return; } n2 = n * n; MPFR_GROUP_INIT_3 (group, MPFR_PREC (b), s1, d, u); /* t equals 2p-2, 2p-3, ... ; s1 equals s+t */ t = 2 * p - 2; mpfr_set (d, tc[p], GMP_RNDN); for (l = 1; l < p; l++) { mpfr_add_ui (s1, s, t, GMP_RNDN); /* s + (2p-2l) */ mpfr_mul (d, d, s1, GMP_RNDN); t = t - 1; mpfr_add_ui (s1, s, t, GMP_RNDN); /* s + (2p-2l-1) */ mpfr_mul (d, d, s1, GMP_RNDN); t = t - 1; mpfr_div_ui (d, d, n2, GMP_RNDN); mpfr_add (d, d, tc[p-l], GMP_RNDN); /* since s is positive and the tc[i] have alternate signs, the following is unlikely */ if (MPFR_UNLIKELY (mpfr_cmpabs (d, tc[p-l]) > 0)) mpfr_set (d, tc[p-l], GMP_RNDN); } mpfr_mul (d, d, s, GMP_RNDN); mpfr_add (s1, s, __gmpfr_one, GMP_RNDN); mpfr_neg (s1, s1, GMP_RNDN); mpfr_ui_pow (u, n, s1, GMP_RNDN); mpfr_mul (b, d, u, GMP_RNDN); MPFR_GROUP_CLEAR (group); } /* Input: p - an integer Output: fills tc[1..p], tc[i] = bernoulli(2i)/(2i)! tc[1]=1/12, tc[2]=-1/720, tc[3]=1/30240, ... */ static void mpfr_zeta_c (int p, mpfr_t *tc) { mpfr_t d; int k, l; if (p > 0) { mpfr_init2 (d, MPFR_PREC (tc[1])); mpfr_div_ui (tc[1], __gmpfr_one, 12, GMP_RNDN); for (k = 2; k <= p; k++) { mpfr_set_ui (d, k-1, GMP_RNDN); mpfr_div_ui (d, d, 12*k+6, GMP_RNDN); for (l=2; l < k; l++) { mpfr_div_ui (d, d, 4*(2*k-2*l+3)*(2*k-2*l+2), GMP_RNDN); mpfr_add (d, d, tc[l], GMP_RNDN); } mpfr_div_ui (tc[k], d, 24, GMP_RNDN); MPFR_CHANGE_SIGN (tc[k]); } mpfr_clear (d); } } /* Input: s - a floating-point number n - an integer Output: sum - a floating-point number approximating sum(1/i^s, i=1..n-1) */ static void mpfr_zeta_part_a (mpfr_t sum, mpfr_srcptr s, int n) { mpfr_t u, s1; int i; MPFR_GROUP_DECL (group); MPFR_GROUP_INIT_2 (group, MPFR_PREC (sum), u, s1); mpfr_neg (s1, s, GMP_RNDN); mpfr_ui_pow (u, n, s1, GMP_RNDN); mpfr_div_2ui (u, u, 1, GMP_RNDN); mpfr_set (sum, u, GMP_RNDN); for (i=n-1; i>1; i--) { mpfr_ui_pow (u, i, s1, GMP_RNDN); mpfr_add (sum, sum, u, GMP_RNDN); } mpfr_add (sum, sum, __gmpfr_one, GMP_RNDN); MPFR_GROUP_CLEAR (group); } /* Input: s - a floating-point number >= 1/2. rnd_mode - a rounding mode. Assumes s is neither NaN nor Infinite. Output: z - Zeta(s) rounded to the precision of z with direction rnd_mode */ static int mpfr_zeta_pos (mpfr_t z, mpfr_srcptr s, mp_rnd_t rnd_mode) { mpfr_t b, c, z_pre, f, s1; double beta, sd, dnep; mpfr_t *tc1; mp_prec_t precz, precs, d, dint; int p, n, l, add; int inex; MPFR_GROUP_DECL (group); MPFR_ZIV_DECL (loop); MPFR_ASSERTD (MPFR_IS_POS (s) && MPFR_GET_EXP (s) >= 0); precz = MPFR_PREC (z); precs = MPFR_PREC (s); /* Zeta(x) = 1+1/2^x+1/3^x+1/4^x+1/5^x+O(1/6^x) so with 2^(EXP(x)-1) <= x < 2^EXP(x) So for x > 2^3, k^x > k^8, so 2/k^x < 2/k^8 Zeta(x) = 1 + 1/2^x*(1+(2/3)^x+(2/4)^x+...) = 1 + 1/2^x*(1+sum((2/k)^x,k=3..infinity)) <= 1 + 1/2^x*(1+sum((2/k)^8,k=3..infinity)) And sum((2/k)^8,k=3..infinity) = -257+128*Pi^8/4725 ~= 0.0438035 So Zeta(x) <= 1 + 1/2^x*2 for x >= 8 The error is < 2^(-x+1) <= 2^(-2^(EXP(x)-1)+1) */ if (MPFR_GET_EXP (s) > 3) { mp_exp_t err; err = MPFR_GET_EXP (s) - 1; if (err > (mp_exp_t) (sizeof (mp_exp_t)*CHAR_BIT-2)) err = MPFR_EMAX_MAX; else err = ((mp_exp_t)1) << err; err = 1 - (-err+1); /* GET_EXP(one) - (-err+1) = err :) */ MPFR_FAST_COMPUTE_IF_SMALL_INPUT (z, __gmpfr_one, err, 1, rnd_mode,{}); } d = precz + MPFR_INT_CEIL_LOG2(precz) + 10; /* we want that s1 = s-1 is exact, i.e. we should have PREC(s1) >= EXP(s) */ dint = (mpfr_uexp_t) MPFR_GET_EXP (s); mpfr_init2 (s1, MAX (precs, dint)); inex = mpfr_sub (s1, s, __gmpfr_one, GMP_RNDN); MPFR_ASSERTD (inex == 0); /* case s=1 */ if (MPFR_IS_ZERO (s1)) { MPFR_SET_INF (z); MPFR_SET_POS (z); MPFR_ASSERTD (inex == 0); goto clear_and_return; } MPFR_GROUP_INIT_4 (group, MPFR_PREC_MIN, b, c, z_pre, f); MPFR_ZIV_INIT (loop, d); for (;;) { /* Principal loop: we compute, in z_pre, an approximation of Zeta(s), that we send to can_round */ if (MPFR_GET_EXP (s1) <= -(mp_exp_t) ((mpfr_prec_t) (d-3)/2)) /* Branch 1: when s-1 is very small, one uses the approximation Zeta(s)=1/(s-1)+gamma, where gamma is Euler's constant */ { dint = MAX (d + 3, precs); MPFR_TRACE (printf ("branch 1\ninternal precision=%d\n", dint)); MPFR_GROUP_REPREC_4 (group, dint, b, c, z_pre, f); mpfr_div (z_pre, __gmpfr_one, s1, GMP_RNDN); mpfr_const_euler (f, GMP_RNDN); mpfr_add (z_pre, z_pre, f, GMP_RNDN); } else /* Branch 2 */ { size_t size; MPFR_TRACE (printf ("branch 2\n")); /* Computation of parameters n, p and working precision */ dnep = (double) d * LOG2; sd = mpfr_get_d (s, GMP_RNDN); /* beta = dnep + 0.61 + sd * log (6.2832 / sd); but a larger value is ok */ #define LOG6dot2832 1.83787940484160805532 beta = dnep + 0.61 + sd * (LOG6dot2832 - LOG2 * __gmpfr_floor_log2 (sd)); if (beta <= 0.0) { p = 0; /* n = 1 + (int) (exp ((dnep - LOG2) / sd)); */ n = 1 + (int) __gmpfr_ceil_exp2 ((d - 1.0) / sd); } else { p = 1 + (int) beta / 2; n = 1 + (int) ((sd + 2.0 * (double) p - 1.0) / 6.2832); } MPFR_TRACE (printf ("\nn=%d\np=%d\n",n,p)); /* add = 4 + floor(1.5 * log(d) / log (2)). We should have add >= 10, which is always fulfilled since d = precz + 11 >= 12, thus ceil(log2(d)) >= 4 */ add = 4 + (3 * MPFR_INT_CEIL_LOG2 (d)) / 2; MPFR_ASSERTD(add >= 10); dint = d + add; if (dint < precs) dint = precs; MPFR_TRACE (printf("internal precision=%d\n",dint)); size = (p + 1) * sizeof(mpfr_t); tc1 = (mpfr_t*) (*__gmp_allocate_func) (size); for (l=1; l<=p; l++) mpfr_init2 (tc1[l], dint); MPFR_GROUP_REPREC_4 (group, dint, b, c, z_pre, f); MPFR_TRACE (printf ("precision of z =%d\n", precz)); /* Computation of the coefficients c_k */ mpfr_zeta_c (p, tc1); /* Computation of the 3 parts of the fonction Zeta. */ mpfr_zeta_part_a (z_pre, s, n); mpfr_zeta_part_b (b, s, n, p, tc1); /* s1 = s-1 is already computed above */ mpfr_div (c, __gmpfr_one, s1, GMP_RNDN); mpfr_ui_pow (f, n, s1, GMP_RNDN); mpfr_div (c, c, f, GMP_RNDN); MPFR_TRACE (MPFR_DUMP (c)); mpfr_add (z_pre, z_pre, c, GMP_RNDN); mpfr_add (z_pre, z_pre, b, GMP_RNDN); for (l=1; l<=p; l++) mpfr_clear (tc1[l]); (*__gmp_free_func) (tc1, size); /* End branch 2 */ } MPFR_TRACE (MPFR_DUMP (z_pre)); if (MPFR_LIKELY (MPFR_CAN_ROUND (z_pre, d-3, precz, rnd_mode))) break; MPFR_ZIV_NEXT (loop, d); } MPFR_ZIV_FREE (loop); inex = mpfr_set (z, z_pre, rnd_mode); MPFR_GROUP_CLEAR (group); clear_and_return: mpfr_clear (s1); return inex; } int mpfr_zeta (mpfr_t z, mpfr_srcptr s, mp_rnd_t rnd_mode) { mpfr_t z_pre, s1, y, p; double sd, eps, m1, c; long add; mp_prec_t precz, prec1, precs, precs1; int inex; MPFR_GROUP_DECL (group); MPFR_ZIV_DECL (loop); MPFR_SAVE_EXPO_DECL (expo); MPFR_LOG_FUNC (("s[%#R]=%R rnd=%d", s, s, rnd_mode), ("z[%#R]=%R inexact=%d", z, z, inex)); /* Zero, Nan or Inf ? */ if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (s))) { if (MPFR_IS_NAN (s)) { MPFR_SET_NAN (z); MPFR_RET_NAN; } else if (MPFR_IS_INF (s)) { if (MPFR_IS_POS (s)) return mpfr_set_ui (z, 1, GMP_RNDN); /* Zeta(+Inf) = 1 */ MPFR_SET_NAN (z); /* Zeta(-Inf) = NaN */ MPFR_RET_NAN; } else /* s iz zero */ { MPFR_ASSERTD (MPFR_IS_ZERO (s)); mpfr_set_ui (z, 1, rnd_mode); mpfr_div_2ui (z, z, 1, rnd_mode); MPFR_CHANGE_SIGN (z); MPFR_RET (0); } } /* s is neither Nan, nor Inf, nor Zero */ /* Check for case s= -2n */ if (MPFR_IS_NEG (s)) { mpfr_t tmp; tmp[0] = *s; MPFR_EXP (tmp) = MPFR_EXP (s) - 1; if (mpfr_integer_p (tmp)) { MPFR_SET_ZERO (z); MPFR_SET_POS (z); MPFR_RET (0); } } MPFR_SAVE_EXPO_MARK (expo); /* Compute Zeta */ if (MPFR_IS_POS (s) && MPFR_GET_EXP (s) >= 0) /* Case s >= 1/2 */ inex = mpfr_zeta_pos (z, s, rnd_mode); else /* use reflection formula zeta(s) = 2^s*Pi^(s-1)*sin(Pi*s/2)*gamma(1-s)*zeta(1-s) */ { precz = MPFR_PREC (z); precs = MPFR_PREC (s); /* Precision precs1 needed to represent 1 - s, and s + 2, without any truncation */ precs1 = precs + 2 + MAX (0, - MPFR_GET_EXP (s)); sd = mpfr_get_d (s, GMP_RNDN) - 1.0; if (sd < 0.0) sd = -sd; /* now sd = abs(s-1.0) */ /* Precision prec1 is the precision on elementary computations; it ensures a final precision prec1 - add for zeta(s) */ /* eps = pow (2.0, - (double) precz - 14.0); */ eps = __gmpfr_ceil_exp2 (- (double) precz - 14.0); m1 = 1.0 + MAX(1.0 / eps, 2.0 * sd) * (1.0 + eps); c = (1.0 + eps) * (1.0 + eps * MAX(8.0, m1)); /* add = 1 + floor(log(c*c*c*(13 + m1))/log(2)); */ add = __gmpfr_ceil_log2 (c * c * c * (13.0 + m1)); prec1 = precz + add; prec1 = MAX (prec1, precs1) + 10; MPFR_GROUP_INIT_4 (group, prec1, z_pre, s1, y, p); MPFR_ZIV_INIT (loop, prec1); for (;;) { mpfr_sub (s1, __gmpfr_one, s, GMP_RNDN);/* s1 = 1-s */ mpfr_zeta_pos (z_pre, s1, GMP_RNDN); /* zeta(1-s) */ mpfr_gamma (y, s1, GMP_RNDN); /* gamma(1-s) */ if (MPFR_IS_INF (y)) /* Zeta(s) < 0 for -4k-2 < s < -4k, Zeta(s) > 0 for -4k < s < -4k+2 */ { MPFR_SET_INF (z_pre); mpfr_div_2ui (s1, s, 2, GMP_RNDN); /* s/4, exact */ mpfr_frac (s1, s1, GMP_RNDN); /* exact, -1 < s1 < 0 */ if (mpfr_cmp_si_2exp (s1, -1, -1) > 0) MPFR_SET_NEG (z_pre); else MPFR_SET_POS (z_pre); break; } mpfr_mul (z_pre, z_pre, y, GMP_RNDN); /* gamma(1-s)*zeta(1-s) */ mpfr_const_pi (p, GMP_RNDD); mpfr_mul (y, s, p, GMP_RNDN); mpfr_div_2ui (y, y, 1, GMP_RNDN); /* s*Pi/2 */ mpfr_sin (y, y, GMP_RNDN); /* sin(Pi*s/2) */ mpfr_mul (z_pre, z_pre, y, GMP_RNDN); mpfr_mul_2ui (y, p, 1, GMP_RNDN); /* 2*Pi */ mpfr_neg (s1, s1, GMP_RNDN); /* s-1 */ mpfr_pow (y, y, s1, GMP_RNDN); /* (2*Pi)^(s-1) */ mpfr_mul (z_pre, z_pre, y, GMP_RNDN); mpfr_mul_2ui (z_pre, z_pre, 1, GMP_RNDN); if (MPFR_LIKELY (MPFR_CAN_ROUND (z_pre, prec1 - add, precz, rnd_mode))) break; MPFR_ZIV_NEXT (loop, prec1); MPFR_GROUP_REPREC_4 (group, prec1, z_pre, s1, y, p); } MPFR_ZIV_FREE (loop); inex = mpfr_set (z, z_pre, rnd_mode); MPFR_GROUP_CLEAR (group); } MPFR_SAVE_EXPO_FREE (expo); return mpfr_check_range (z, inex, rnd_mode); }