/* mpfr_zeta_ui -- compute the Riemann Zeta function for integer argument. Copyright 2005, 2006 Free Software Foundation, Inc. This file is part of the MPFR Library. The MPFR Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The MPFR Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the MPFR Library; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */ #define MPFR_NEED_LONGLONG_H #include "mpfr-impl.h" int mpfr_zeta_ui (mpfr_ptr z, unsigned long m, mp_rnd_t r) { MPFR_ZIV_DECL (loop); if (m == 0) { mpfr_set_ui (z, 1, r); mpfr_div_2ui (z, z, 1, r); MPFR_CHANGE_SIGN (z); MPFR_RET (0); } else if (m == 1) { MPFR_SET_INF (z); MPFR_SET_POS (z); return 0; } else /* m >= 2 */ { mp_prec_t p = MPFR_PREC(z); unsigned long n, k, err, kbits; mpz_t d, t, s, q; mpfr_t y; int inex; if (m >= p) /* 2^(-m) < ulp(1) = 2^(1-p). This means that 2^(-m) <= 1/2*ulp(1). We have 3^(-m)+4^(-m)+... < 2^(-m) i.e. zeta(m) < 1+2*2^(-m) for m >= 3 */ { if (m == 2) /* necessarily p=2 */ return mpfr_set_ui_2exp (z, 13, -3, r); else if (r == GMP_RNDZ || r == GMP_RNDD || (r == GMP_RNDN && m > p)) { mpfr_set_ui (z, 1, r); return -1; } else { mpfr_set_ui (z, 1, r); mpfr_nextabove (z); return 1; } } /* now treat also the case where zeta(m) - (1+1/2^m) < 1/2*ulp(1), and the result is either 1+2^(-m) or 1+2^(-m)+2^(1-p). */ mpfr_init2 (y, 31); if (m >= p / 2) /* otherwise 4^(-m) > 2^(-p) */ { /* the following is a lower bound for log(3)/log(2) */ mpfr_set_str_binary (y, "1.100101011100000000011010001110"); mpfr_mul_ui (y, y, m, GMP_RNDZ); /* lower bound for log2(3^m) */ if (mpfr_cmp_ui (y, p + 2) >= 0) { mpfr_clear (y); mpfr_set_ui (z, 1, GMP_RNDZ); mpfr_div_2ui (z, z, m, GMP_RNDZ); mpfr_add_ui (z, z, 1, GMP_RNDZ); if (r != GMP_RNDU) return -1; mpfr_nextabove (z); return 1; } } mpz_init (s); mpz_init (d); mpz_init (t); mpz_init (q); p += MPFR_INT_CEIL_LOG2(p); /* account of the n term in the error */ p += MPFR_INT_CEIL_LOG2(p) + 15; /* initial value */ MPFR_ZIV_INIT (loop, p); for(;;) { /* 0.39321985067869744 = log(2)/log(3+sqrt(8)) */ n = 1 + (unsigned long) (0.39321985067869744 * (double) p); err = n + 4; mpfr_set_prec (y, p); /* computation of the d[k] */ mpz_set_ui (s, 0); mpz_set_ui (t, 1); mpz_mul_2exp (t, t, 2 * n - 1); /* t[n] */ mpz_set (d, t); for (k = n; k > 0; k--) { count_leading_zeros (kbits, k); kbits = BITS_PER_MP_LIMB - kbits; /* if k^m is too large, use mpz_tdiv_q */ if (m * kbits > 2 * BITS_PER_MP_LIMB) { /* if we know in advance that k^m > d, then floor(d/k^m) will be zero below, so there is no need to compute k^m */ kbits = (kbits - 1) * m + 1; /* k^m has at least kbits bits */ if (kbits > mpz_sizeinbase (d, 2)) mpz_set_ui (q, 0); else { mpz_ui_pow_ui (q, k, m); mpz_tdiv_q (q, d, q); } } else /* use several mpz_tdiv_q_ui calls */ { unsigned long km = k, mm = m - 1; while (mm > 0 && km < ULONG_MAX / k) { km *= k; mm --; } mpz_tdiv_q_ui (q, d, km); while (mm > 0) { km = k; mm --; while (mm > 0 && km < ULONG_MAX / k) { km *= k; mm --; } mpz_tdiv_q_ui (q, q, km); } } if (k % 2) mpz_add (s, s, q); else mpz_sub (s, s, q); /* we have d[k] = sum(t[i], i=k+1..n) with t[i] = n*(n+i-1)!*4^i/(n-i)!/(2i)! t[k-1]/t[k] = k*(2k-1)/(n-k+1)/(n+k-1)/2 */ #if (BITS_PER_MP_LIMB == 32) #define KMAX 46341 /* max k such that k*(2k-1) < 2^32 */ #elif (BITS_PER_MP_LIMB == 64) #define KMAX 3037000500 #endif #ifdef KMAX if (k <= KMAX) mpz_mul_ui (t, t, k * (2 * k - 1)); else #endif { mpz_mul_ui (t, t, k); mpz_mul_ui (t, t, 2 * k - 1); } mpz_div_2exp (t, t, 1); if (n < 1UL << (BITS_PER_MP_LIMB / 2)) /* (n - k + 1) * (n + k - 1) < n^2 */ mpz_divexact_ui (t, t, (n - k + 1) * (n + k - 1)); else { mpz_divexact_ui (t, t, n - k + 1); mpz_divexact_ui (t, t, n + k - 1); } mpz_add (d, d, t); } /* multiply by 1/(1-2^(1-m)) = 1 + 2^(1-m) + 2^(2-m) + ... */ mpz_div_2exp (t, s, m - 1); do { err ++; mpz_add (s, s, t); mpz_div_2exp (t, t, m - 1); } while (mpz_cmp_ui (t, 0) > 0); /* divide by d[n] */ mpz_mul_2exp (s, s, p); mpz_tdiv_q (s, s, d); mpfr_set_z (y, s, GMP_RNDN); mpfr_div_2ui (y, y, p, GMP_RNDN); err = MPFR_INT_CEIL_LOG2 (err); if (MPFR_LIKELY(MPFR_CAN_ROUND (y, p - err, MPFR_PREC(z), r))) break; MPFR_ZIV_NEXT (loop, p); } MPFR_ZIV_FREE (loop); mpz_clear (d); mpz_clear (t); mpz_clear (q); mpz_clear (s); inex = mpfr_set (z, y, r); mpfr_clear (y); return inex; } }