1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
|
/* mpfr_acos -- arc-cosinus of a floating-point number
Copyright 2001 Free Software Foundation.
This file is part of the MPFR Library, and was contributed by Mathieu Dutour.
The MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or (at your
option) any later version.
The MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the MPFR Library; see the file COPYING.LIB. If not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
MA 02111-1307, USA. */
#include <stdio.h>
#include <stdlib.h>
#include "gmp.h"
#include "gmp-impl.h"
#include "mpfr.h"
#include "mpfr-impl.h"
int
mpfr_acos (mpfr_ptr acos, mpfr_srcptr x, mp_rnd_t rnd_mode)
{
mpfr_t xp;
mpfr_t arcc;
int signe, suplement;
mpfr_t tmp;
int Prec;
int prec_acos;
int good = 0;
int realprec;
int compared;
int inexact = 0;
/* Trivial cases */
if (MPFR_IS_NAN(x) || MPFR_IS_INF(x))
{
MPFR_SET_NAN(acos);
MPFR_RET_NAN;
}
/* Set x_p=|x| */
signe = MPFR_SIGN(x);
mpfr_init2 (xp, MPFR_PREC(x));
mpfr_abs (xp, x, rnd_mode);
compared = mpfr_cmp_ui (xp, 1);
if (compared > 0) /* acos(x) = NaN for x > 1 */
{
mpfr_clear (xp);
MPFR_SET_NAN(acos);
MPFR_RET_NAN;
}
if (compared == 0)
{
mpfr_clear (xp);
if (signe > 0) /* acos(+1) = 0 */
return mpfr_set_ui (acos, 0, rnd_mode);
else /* acos(-1) = Pi */
{
mpfr_const_pi (acos, rnd_mode);
return 1; /* inexact */
}
}
if (MPFR_IS_ZERO(x)) /* acos(0)=Pi/2 */
{
mpfr_clear (xp);
mpfr_const_pi (acos, rnd_mode);
MPFR_EXP(acos)--;
return 1; /* inexact */
}
prec_acos = MPFR_PREC(acos);
mpfr_ui_sub (xp, 1, xp, GMP_RNDD);
if (signe > 0)
suplement = 2 - 2 * MPFR_EXP(xp);
else
suplement = 2 - MPFR_EXP(xp);
realprec = prec_acos + 10;
while (!good)
{
Prec = realprec+suplement;
/* Initialisation */
mpfr_init2 (tmp, Prec);
mpfr_init2 (arcc, Prec);
mpfr_mul (tmp, x, x, GMP_RNDN);
mpfr_ui_sub (tmp, 1, tmp, GMP_RNDN);
mpfr_sqrt (tmp, tmp, GMP_RNDN);
mpfr_div (tmp, x, tmp, GMP_RNDN);
mpfr_atan (arcc, tmp, GMP_RNDN);
mpfr_const_pi (tmp, GMP_RNDN);
mpfr_div_2ui (tmp, tmp, 1, GMP_RNDN);
mpfr_sub (arcc, tmp, arcc, GMP_RNDN);
if (mpfr_can_round (arcc, realprec, GMP_RNDN, rnd_mode, MPFR_PREC(acos)))
{
inexact = mpfr_set (acos, arcc, rnd_mode);
good = 1;
}
else
realprec += _mpfr_ceil_log2 ((double) realprec);
mpfr_clear (tmp);
mpfr_clear (arcc);
}
mpfr_clear (xp);
return inexact;
}
|