1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
|
/* mpfr_agm -- arithmetic-geometric mean of two floating-point numbers
Copyright 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation.
This file is part of the MPFR Library.
The MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or (at your
option) any later version.
The MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the MPFR Library; see the file COPYING.LIB. If not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
MA 02111-1307, USA. */
#include "mpfr-impl.h"
int
mpfr_agm (mpfr_ptr r, mpfr_srcptr op2, mpfr_srcptr op1, mp_rnd_t rnd_mode)
{
int compare, inexact;
mp_size_t s;
mp_prec_t p, q;
mp_limb_t *up, *vp, *tmpp;
mpfr_t u, v, tmp;
TMP_DECL(marker);
/* Deal with special values */
if (MPFR_ARE_SINGULAR (op1, op2))
{
/* If a or b is NaN, the result is NaN */
if (MPFR_IS_NAN(op1) || MPFR_IS_NAN(op2))
{
MPFR_SET_NAN(r);
MPFR_RET_NAN;
}
/* now one of a or b is Inf or 0 */
/* If a and b is +Inf, the result is +Inf.
Otherwise if a or b is -Inf or 0, the result is NaN */
else if (MPFR_IS_INF(op1) || MPFR_IS_INF(op2))
{
if (MPFR_IS_STRICTPOS(op1) && MPFR_IS_STRICTPOS(op2))
{
MPFR_SET_INF(r);
MPFR_SET_SAME_SIGN(r, op1);
MPFR_RET(0); /* exact */
}
else
{
MPFR_SET_NAN(r);
MPFR_RET_NAN;
}
}
else /* a and b are neither NaN nor Inf, and one is zero */
{ /* If a or b is 0, the result is +0 since a sqrt is positive */
MPFR_ASSERTD (MPFR_IS_ZERO (op1) || MPFR_IS_ZERO (op2));
MPFR_SET_POS (r);
MPFR_SET_ZERO (r);
MPFR_RET (0); /* exact */
}
}
MPFR_CLEAR_FLAGS (r);
/* If a or b is negative (excluding -Infinity), the result is NaN */
if (MPFR_UNLIKELY(MPFR_IS_NEG(op1) || MPFR_IS_NEG(op2)))
{
MPFR_SET_NAN(r);
MPFR_RET_NAN;
}
/* Precision of the following calculus */
q = MPFR_PREC(r);
p = q + 15;
s = (p - 1) / BITS_PER_MP_LIMB + 1;
/* b (op2) and a (op1) are the 2 operands but we want b >= a */
compare = mpfr_cmp (op1, op2);
if (MPFR_UNLIKELY( compare == 0 ))
{
mpfr_set (r, op1, rnd_mode);
MPFR_RET (0); /* exact */
}
else if (compare > 0)
{
mpfr_srcptr t = op1;
op1 = op2;
op2 = t;
}
/* Now b(=op2) >= a (=op1) */
TMP_MARK(marker);
/* Main loop */
for (;;)
{
mp_prec_t eq;
/* Init temporary vars */
MPFR_TMP_INIT (up, u, p, s);
MPFR_TMP_INIT (vp, v, p, s);
MPFR_TMP_INIT (tmpp, tmp, p, s);
/* Calculus of un and vn */
mpfr_mul (u, op1, op2, GMP_RNDN); /* Faster since PREC(op) < PREC(u) */
mpfr_sqrt (u, u, GMP_RNDN);
mpfr_add (v, op1, op2, GMP_RNDN); /* add with !=prec is still good*/
mpfr_div_2ui (v, v, 1, GMP_RNDN);
while (mpfr_cmp2 (u, v, &eq) != 0 && eq <= p - 2)
{
mpfr_add (tmp, u, v, GMP_RNDN);
/* It seems to work well. Any proofs are welcome. */
#if 0
if (2*eq > p)
{
mpfr_div_2ui (tmp, tmp, 1, GMP_RNDN);
mpfr_swap (v, tmp);
break;
}
#elif 0
if (4*eq > p)
{
mpfr_div_2ui (tmp, tmp, 1, GMP_RNDN); /* U(k) */
mpfr_sub (u, v, u, GMP_RNDN); /* e = V(k-1)-U(k-1) */
mpfr_sqr (u, u, GMP_RNDN); /* e = e^2 */
mpfr_div_2ui (u, u, 4, GMP_RNDN); /* e*= (1/2)^2*1/4 */
mpfr_div (u, u, tmp, GMP_RNDN); /* 1/4*e^2/U(k) */
mpfr_sub (v, tmp, u, GMP_RNDN);
break;
}
#endif
mpfr_mul (u, u, v, GMP_RNDN);
mpfr_sqrt (u, u, GMP_RNDN);
mpfr_div_2ui (tmp, tmp, 1, GMP_RNDN);
mpfr_swap (v, tmp);
}
/* Roundability of the result */
if (mpfr_can_round (v, p - 4 - 3, GMP_RNDN, GMP_RNDZ,
q + (rnd_mode == GMP_RNDN)))
break; /* Stop the loop */
/* Next iteration */
p += 5;
s = (p - 1) / BITS_PER_MP_LIMB + 1;
}
/* End of loop */
/* Setting of the result */
inexact = mpfr_set (r, v, rnd_mode);
/* Let's clean */
TMP_FREE(marker);
return inexact; /* agm(u,v) can be exact for u, v rational only for u=v.
Proof (due to Nicolas Brisebarre): it suffices to consider
u=1 and v<1. Then 1/AGM(1,v) = 2F1(1/2,1/2,1;1-v^2),
and a theorem due to G.V. Chudnovsky states that for x a
non-zero algebraic number with |x|<1, then
2F1(1/2,1/2,1;x) and 2F1(-1/2,1/2,1;x) are algebraically
independent over Q. */
}
|