1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
|
/* mpfr_atan2 -- arc-tan 2 of a floating-point number
Copyright 2005, 2006, 2007 Free Software Foundation, Inc.
Contributed by the Arenaire and Cacao projects, INRIA.
This file is part of the MPFR Library, and was contributed by Mathieu Dutour.
The MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or (at your
option) any later version.
The MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the MPFR Library; see the file COPYING.LIB. If not, write to
the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston,
MA 02110-1301, USA. */
#define MPFR_NEED_LONGLONG_H
#include "mpfr-impl.h"
int
mpfr_atan2 (mpfr_ptr dest, mpfr_srcptr y, mpfr_srcptr x, mp_rnd_t rnd_mode)
{
mpfr_t tmp, pi;
int inexact;
mp_prec_t prec;
mp_exp_t e;
MPFR_SAVE_EXPO_DECL (expo);
MPFR_ZIV_DECL (loop);
MPFR_LOG_FUNC (("y[%#R]=%R x[%#R]=%R rnd=%d", y, y, x, x, rnd_mode),
("atan[%#R]=%R inexact=%d", dest, dest, inexact));
/* Special cases */
if (MPFR_ARE_SINGULAR (x, y))
{
/* atan2(0, 0) does not raise the "invalid" floating-point
exception, nor does atan2(y, 0) raise the "divide-by-zero"
floating-point exception.
-- atan2(±0, -0) returns ±pi.313)
-- atan2(±0, +0) returns ±0.
-- atan2(±0, x) returns ±pi, for x < 0.
-- atan2(±0, x) returns ±0, for x > 0.
-- atan2(y, ±0) returns -pi/2 for y < 0.
-- atan2(y, ±0) returns pi/2 for y > 0.
-- atan2(±oo, -oo) returns ±3pi/4.
-- atan2(±oo, +oo) returns ±pi/4.
-- atan2(±oo, x) returns ±pi/2, for finite x.
-- atan2(±y, -oo) returns ±pi, for finite y > 0.
-- atan2(±y, +oo) returns ±0, for finite y > 0.
*/
if (MPFR_IS_NAN (x) || MPFR_IS_NAN (y))
{
MPFR_SET_NAN (dest);
MPFR_RET_NAN;
}
if (MPFR_IS_ZERO (y))
{
if (MPFR_IS_NEG (x)) /* +/- PI */
{
set_pi:
if (MPFR_IS_NEG (y))
{
inexact = mpfr_const_pi (dest, MPFR_INVERT_RND (rnd_mode));
MPFR_CHANGE_SIGN (dest);
return -inexact;
}
else
return mpfr_const_pi (dest, rnd_mode);
}
else /* +/- 0 */
{
set_zero:
MPFR_SET_ZERO (dest);
MPFR_SET_SAME_SIGN (dest, y);
return 0;
}
}
if (MPFR_IS_ZERO (x))
{
set_pi_2:
if (MPFR_IS_NEG (y)) /* -PI/2 */
{
inexact = mpfr_const_pi (dest, MPFR_INVERT_RND(rnd_mode));
MPFR_CHANGE_SIGN (dest);
mpfr_div_2ui (dest, dest, 1, rnd_mode);
return -inexact;
}
else /* PI/2 */
{
inexact = mpfr_const_pi (dest, rnd_mode);
mpfr_div_2ui (dest, dest, 1, rnd_mode);
return inexact;
}
}
if (MPFR_IS_INF (y))
{
if (!MPFR_IS_INF (x)) /* +/- PI/2 */
goto set_pi_2;
else if (MPFR_IS_POS (x)) /* +/- PI/4 */
{
if (MPFR_IS_NEG (y))
{
rnd_mode = MPFR_INVERT_RND (rnd_mode);
inexact = mpfr_const_pi (dest, rnd_mode);
MPFR_CHANGE_SIGN (dest);
mpfr_div_2ui (dest, dest, 2, rnd_mode);
return -inexact;
}
else
{
inexact = mpfr_const_pi (dest, rnd_mode);
mpfr_div_2ui (dest, dest, 2, rnd_mode);
return inexact;
}
}
else /* +/- 3*PI/4: Ugly since we have to round properly */
{
mpfr_t tmp;
MPFR_ZIV_DECL (loop);
mp_prec_t prec = MPFR_PREC (dest) + BITS_PER_MP_LIMB;
mpfr_init2 (tmp, prec);
MPFR_ZIV_INIT (loop, prec);
for (;;)
{
mpfr_const_pi (tmp, GMP_RNDN);
mpfr_mul_ui (tmp, tmp, 3, GMP_RNDN); /* Error <= 2 */
mpfr_div_2ui (tmp, tmp, 2, GMP_RNDN);
if (mpfr_round_p (MPFR_MANT (tmp), MPFR_LIMB_SIZE (tmp),
MPFR_PREC (tmp)-2,
MPFR_PREC (dest) + (rnd_mode == GMP_RNDN)))
break;
MPFR_ZIV_NEXT (loop, prec);
mpfr_set_prec (tmp, prec);
}
MPFR_ZIV_FREE (loop);
if (MPFR_IS_NEG (y))
MPFR_CHANGE_SIGN (tmp);
inexact = mpfr_set (dest, tmp, rnd_mode);
mpfr_clear (tmp);
return inexact;
}
}
MPFR_ASSERTD (MPFR_IS_INF (x));
if (MPFR_IS_NEG (x))
goto set_pi;
else
goto set_zero;
}
/* When x=1, atan2(y,x) = atan(y). FIXME: more generally, if x is a power
of two, we could call directly atan(y/x) since y/x is exact. */
if (mpfr_cmp_ui (x, 1) == 0)
return mpfr_atan (dest, y, rnd_mode);
MPFR_SAVE_EXPO_MARK (expo);
/* Set up initial prec */
prec = MPFR_PREC (dest) + 3 + MPFR_INT_CEIL_LOG2 (MPFR_PREC (dest));
mpfr_init2 (tmp, prec);
MPFR_ZIV_INIT (loop, prec);
if (MPFR_IS_POS (x))
/* use atan2(y,x) = atan(y/x) */
for (;;)
{
int div_inex;
MPFR_BLOCK_DECL (flags);
MPFR_BLOCK (flags, div_inex = mpfr_div (tmp, y, x, GMP_RNDN));
if (div_inex == 0)
{
/* Result is exact. */
inexact = mpfr_atan (dest, tmp, rnd_mode);
goto end;
}
/* Error <= ulp (tmp) except in case of underflow or overflow. */
/* If the division underflowed, since |atan(z)/z| < 1, we have
an underflow. */
if (MPFR_UNDERFLOW (flags))
{
int sign;
/* In the case GMP_RNDN with 2^(emin-2) < |y/x| < 2^(emin-1):
The smallest significand value S > 1 of |y/x| is:
* 1 / (1 - 2^(-px)) if py <= px,
* (1 - 2^(-px) + 2^(-py)) / (1 - 2^(-px)) if py >= px.
Therefore S - 1 > 2^(-pz), where pz = max(px,py). We have:
atan(|y/x|) > atan(z), where z = 2^(emin-2) * (1 + 2^(-pz)).
> z - z^3 / 3.
> 2^(emin-2) * (1 + 2^(-pz) - 2^(2 emin - 5))
Assuming pz <= -2 emin + 5, we can round away from zero
(this is what mpfr_underflow always does on GMP_RNDN).
In the case GMP_RNDN with |y/x| <= 2^(emin-2), we round
towards zero, as |atan(z)/z| < 1. */
MPFR_ASSERTN (MPFR_PREC_MAX <=
2 * (mpfr_uexp_t) - MPFR_EMIN_MIN + 5);
if (rnd_mode == GMP_RNDN && MPFR_IS_ZERO (tmp))
rnd_mode = GMP_RNDZ;
sign = MPFR_SIGN (tmp);
mpfr_clear (tmp);
MPFR_SAVE_EXPO_FREE (expo);
return mpfr_underflow (dest, rnd_mode, sign);
}
mpfr_atan (tmp, tmp, GMP_RNDN); /* Error <= 2*ulp (tmp) since
abs(D(arctan)) <= 1 */
/* TODO: check that the error bound is correct in case of overflow. */
/* FIXME: Error <= ulp(tmp) ? */
if (MPFR_LIKELY (MPFR_CAN_ROUND (tmp, prec - 2, MPFR_PREC (dest),
rnd_mode)))
break;
MPFR_ZIV_NEXT (loop, prec);
mpfr_set_prec (tmp, prec);
}
else /* x < 0 */
/* Use sign(y)*(PI - atan (|y/x|)) */
{
mpfr_init2 (pi, prec);
for (;;)
{
mpfr_div (tmp, y, x, GMP_RNDN); /* Error <= ulp (tmp) */
/* If tmp is 0, we have |y/x| <= 2^(-emin-2), thus
atan|y/x| < 2^(-emin-2). */
MPFR_SET_POS (tmp); /* no error */
mpfr_atan (tmp, tmp, GMP_RNDN); /* Error <= 2*ulp (tmp) since
abs(D(arctan)) <= 1 */
mpfr_const_pi (pi, GMP_RNDN); /* Error <= ulp(pi) /2 */
e = MPFR_NOTZERO(tmp) ? MPFR_GET_EXP (tmp) : __gmpfr_emin - 1;
mpfr_sub (tmp, pi, tmp, GMP_RNDN); /* see above */
if (MPFR_IS_NEG (y))
MPFR_CHANGE_SIGN (tmp);
/* Error(tmp) <= (1/2+2^(EXP(pi)-EXP(tmp)-1)+2^(e-EXP(tmp)+1))*ulp
<= 2^(MAX (MAX (EXP(PI)-EXP(tmp)-1, e-EXP(tmp)+1),
-1)+2)*ulp(tmp) */
e = MAX (MAX (MPFR_GET_EXP (pi)-MPFR_GET_EXP (tmp) - 1,
e - MPFR_GET_EXP (tmp) + 1), -1) + 2;
if (MPFR_LIKELY (MPFR_CAN_ROUND (tmp, prec - e, MPFR_PREC (dest),
rnd_mode)))
break;
MPFR_ZIV_NEXT (loop, prec);
mpfr_set_prec (tmp, prec);
mpfr_set_prec (pi, prec);
}
mpfr_clear (pi);
}
inexact = mpfr_set (dest, tmp, rnd_mode);
end:
MPFR_ZIV_FREE (loop);
mpfr_clear (tmp);
MPFR_SAVE_EXPO_FREE (expo);
return mpfr_check_range (dest, inexact, rnd_mode);
}
|