1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
|
/* mpfr_cos -- cosine of a floating-point number
Copyright 2001, 2002, 2003, 2004, 2005 Free Software Foundation.
This file is part of the MPFR Library.
The MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or (at your
option) any later version.
The MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the MPFR Library; see the file COPYING.LIB. If not, write to
the Free Software Foundation, Inc., 51 Franklin Place, Fifth Floor, Boston,
MA 02110-1301, USA. */
#define MPFR_NEED_LONGLONG_H
#include "mpfr-impl.h"
/* s <- 1 - r/2! + r^2/4! + ... + (-1)^l r^l/(2l)! + ...
Assumes |r| < 1.
Returns the index l0 of the last term (-1)^l r^l/(2l)!.
The absolute error on s is at most 2 * l0 * 2^(-m).
*/
static int
mpfr_cos2_aux (mpfr_ptr s, mpfr_srcptr r)
{
unsigned int l, b = 2;
mp_exp_t prec, m = MPFR_PREC (s);
mpfr_t t;
MPFR_ASSERTD (MPFR_GET_EXP (r) <= 0);
mpfr_init2 (t, m);
/* First step for l==1 can be simplified,
futhermore multiply by 1 is not efficient since it is an exact
multiplication (mulhigh failed and we must do a complete mul) */
mpfr_div_2ui (t, r, 1, GMP_RNDN); /* exact */
mpfr_sub (s, __gmpfr_one, t, GMP_RNDD);
MPFR_ASSERTD (MPFR_GET_EXP (s) == 0); /* check 1/2 <= s < 1 */
for (l = 2; MPFR_GET_EXP (t) + m >= 0; l++)
{
mpfr_mul (t, t, r, GMP_RNDU); /* err <= (3l-1) ulp */
mpfr_div_ui (t, t, (unsigned long) (2*l-1)*(2*l), GMP_RNDU);
/* err <= 3l ulp */
MPFR_ASSERTD (MPFR_IS_POS (t));
MPFR_ASSERTD (MPFR_IS_POS (s));
if (l % 2 == 0)
mpfr_add (s, s, t, GMP_RNDD);
else
mpfr_sub (s, s, t, GMP_RNDD);
MPFR_ASSERTD (MPFR_GET_EXP (s) == 0); /* check 1/2 <= s < 1 */
/* err(s) <= l * 2^(-m) */
if (MPFR_UNLIKELY (3 * l > (1U << b)))
b++;
/* now 3l <= 2^b, we want 3l*ulp(t) <= 2^(-m)
i.e. b+EXP(t)-PREC(t) <= -m */
prec = m + MPFR_GET_EXP (t) + b;
if (MPFR_LIKELY (prec >= MPFR_PREC_MIN))
mpfr_prec_round (t, prec, GMP_RNDN);
}
mpfr_clear (t);
return l;
}
int
mpfr_cos (mpfr_ptr y, mpfr_srcptr x, mp_rnd_t rnd_mode)
{
mp_prec_t K0, K, precy, m, k, l;
int inexact;
mpfr_t r, s;
mp_exp_t exps, cancel = 0;
MPFR_ZIV_DECL (loop);
MPFR_SAVE_EXPO_DECL (expo);
MPFR_GROUP_DECL (group);
MPFR_LOG_FUNC (("x[%#R]=%R rnd=%d", x, x, rnd_mode),
("y[%#R]=%R inexact=%d", y, y, inexact));
if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
{
if (MPFR_IS_NAN (x) || MPFR_IS_INF (x))
{
MPFR_SET_NAN (y);
MPFR_RET_NAN;
}
else
{
MPFR_ASSERTD (MPFR_IS_ZERO (x));
return mpfr_set_ui (y, 1, GMP_RNDN);
}
}
MPFR_SAVE_EXPO_MARK (expo);
/* cos(x) = 1-x^2/2 + ..., so error < 2^(2*EXP(x)-1) */
MPFR_FAST_COMPUTE_IF_SMALL_INPUT (y, __gmpfr_one, 0-2*MPFR_GET_EXP (x)+1,0,
rnd_mode, inexact = _inexact; goto end);
/* Compute initial precision */
precy = MPFR_PREC (y);
/* We can choose everything we want for K0.
This formula has been created by trying many things...
and is far from perfect */
K0 = (MPFR_GET_EXP (x) > 0) ? (MPFR_GET_EXP (x)) : 0 ;
K0 = __gmpfr_isqrt (precy / (2+2*K0+MPFR_INT_CEIL_LOG2 (precy)/4) );
m = precy + 3*K0 + 4;
if (MPFR_GET_EXP (x) >= 0)
m += 5*MPFR_GET_EXP (x);
else
m += -MPFR_GET_EXP (x);
MPFR_GROUP_INIT_2 (group, m, r, s);
MPFR_ZIV_INIT (loop, m);
for (;;)
{
mpfr_mul (r, x, x, GMP_RNDU); /* err <= 1 ulp */
/* we need that |r| < 1 for mpfr_cos2_aux, i.e. up(x^2)/2^(2K) < 1 */
K = K0 + MAX (MPFR_GET_EXP (r), 0);
/*mpfr_div_2ui (r, r, 2 * K, GMP_RNDN); r = (x/2^K)^2, err <= 1 ulp */
MPFR_SET_EXP (r, MPFR_GET_EXP (r)-2*K); /* Can't overflow! */
/* s <- 1 - r/2! + ... + (-1)^l r^l/(2l)! */
l = mpfr_cos2_aux (s, r);
MPFR_SET_ONE (r);
for (k = 0; k < K; k++)
{
mpfr_mul (s, s, s, GMP_RNDU); /* err <= 2*olderr */
MPFR_SET_EXP (s, MPFR_GET_EXP (s)+1); /* Can't overflow */
mpfr_sub (s, s, r, GMP_RNDN); /* err <= 4*olderr */
MPFR_ASSERTD (MPFR_GET_EXP (s) <= 1);
}
/* absolute error on s is bounded by (2l+1/3)*2^(2K-m)
2l+1/3 <= 2l+1 */
k = MPFR_INT_CEIL_LOG2 (2*l+1) + 2*K;
/* now the error is bounded by 2^(k-m) = 2^(EXP(s)-err) */
exps = MPFR_GET_EXP (s);
if (MPFR_LIKELY (MPFR_CAN_ROUND (s, exps + m - k, precy, rnd_mode)))
break;
if (MPFR_UNLIKELY (exps == 1))
/* s = 1 or -1, and except x=0 which was
already checked above, cos(x) cannot
be 1 or -1, so we can round */
{
if (exps + m - k > precy
/* if round to nearest or away, result is s,
otherwise it is round(nexttoward (s, 0)) */
&& MPFR_IS_LIKE_RNDZ (rnd_mode, MPFR_IS_NEG (s)))
mpfr_nexttozero (s);
break;
}
if (exps < cancel)
{
m += cancel - exps;
cancel = exps;
}
MPFR_ZIV_NEXT (loop, m);
MPFR_GROUP_REPREC_2 (group, m, r, s);
}
MPFR_ZIV_FREE (loop);
inexact = mpfr_set (y, s, rnd_mode);
MPFR_GROUP_CLEAR (group);
end:
MPFR_SAVE_EXPO_FREE (expo);
MPFR_RET (mpfr_check_range (y, inexact, rnd_mode));
}
|