summaryrefslogtreecommitdiff
path: root/cos.c
blob: a46b9427c891da039945b6b596aa4110c8cda8bf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
/* mpfr_cos -- cosine of a floating-point number

Copyright (C) 2001 Free Software Foundation.

This file is part of the MPFR Library.

The MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Library General Public License as published by
the Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

The MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Library General Public
License for more details.

You should have received a copy of the GNU Library General Public License
along with the MPFR Library; see the file COPYING.LIB.  If not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
MA 02111-1307, USA. */

#include <stdio.h>
#include "gmp.h"
#include "gmp-impl.h"
#include "mpfr.h"
#include "mpfr-impl.h"

static int mpfr_cos2_aux       _PROTO ((mpfr_ptr, mpfr_srcptr));

int 
#if __STDC__
mpfr_cos (mpfr_ptr y, mpfr_srcptr x, mp_rnd_t rnd_mode) 
#else
mpfr_cos (y, x, rnd_mode)
     mpfr_ptr y;
     mpfr_srcptr x;
     mp_rnd_t rnd_mode;
#endif
{
  int K, precy, m, k, l, inexact;
  mpfr_t r, s;

  if (MPFR_IS_NAN(x) || MPFR_IS_INF(x))
    {
      MPFR_SET_NAN(y);
      return 1;
    }

  if (!MPFR_NOTZERO(x))
    {
      mpfr_set_ui (y, 1, GMP_RNDN);
      return 0;
    }

  precy = MPFR_PREC(y);

  K = _mpfr_isqrt(precy / 2);
  if (MPFR_EXP(x) > 0)
    K += MPFR_EXP(x);
  /* we need at least K + log2(precy/K) extra bits */
  m = precy + 3 * K + 3;

  mpfr_init2 (r, m);
  mpfr_init2 (s, m);

  do
    {
      mpfr_mul (r, x, x, GMP_RNDU); /* err <= 1 ulp */
      mpfr_div_2exp (r, r, 2 * K, GMP_RNDN); /* r = (x/2^K)^2, err <= 1 ulp */

      /* s <- 1 - r/2! + ... + (-1)^l r^l/(2l)! */
      l = mpfr_cos2_aux (s, r);

      for (k = 0; k < K; k++)
	{
	  mpfr_mul (s, s, s, GMP_RNDU); /* err <= 2*olderr */
	  mpfr_mul_2exp (s, s, 1, GMP_RNDU); /* err <= 4*olderr */
	  mpfr_sub_ui (s, s, 1, GMP_RNDN);
	}

      /* absolute error on s is bounded by (2l+1/3)*2^(2K-m) */
      for (k = 2 * K, l = 2 * l + 1; l > 1; k++, l = (l + 1) >> 1);
      /* now the error is bounded by 2^(k-m) = 2^(EXP(s)-err) */

      l = mpfr_can_round (s, MPFR_EXP(s) + m - k, GMP_RNDN, rnd_mode, precy);

      if (l == 0)
	{
	  m += BITS_PER_MP_LIMB;
	  mpfr_set_prec (r, m);
	  mpfr_set_prec (s, m);
	}
    }
  while (l == 0);

  inexact = mpfr_set (y, s, rnd_mode);

  mpfr_clear (r);
  mpfr_clear (s);

  return inexact;
}

/* s <- 1 - r/2! + r^2/4! + ... + (-1)^l r^l/(2l)! + ...
   Assumes |r| < 1.
   Returns the index l0 of the last term (-1)^l r^l/(2l)!.
   The absolute error on s is at most 2 * l0 * 2^(-m).
*/
static int
#if __STDC__
mpfr_cos2_aux (mpfr_ptr s, mpfr_srcptr r)
#else
mpfr_cos2_aux (s, r)
     mpfr_ptr s;
     mpfr_srcptr r;
#endif
{
  unsigned int l, b = 2;
  int prec_t, m = MPFR_PREC(s);
  mpfr_t t;

  assert (MPFR_EXP(r) <= 0);
  mpfr_init2 (t, m);
  mpfr_set_ui (t, 1, GMP_RNDN);
  mpfr_set_ui(s, 1, GMP_RNDN);

  for (l = 1; MPFR_EXP(t) >= -m; l++)
    {
      mpfr_mul (t, t, r, GMP_RNDU); /* err <= (3l-1) ulp */
      mpfr_div_ui (t, t, (2*l-1)*(2*l), GMP_RNDU); /* err <= 3l ulp */
      if (l % 2 == 0)
	mpfr_add (s, s, t, GMP_RNDD);
      else
	mpfr_sub (s, s, t, GMP_RNDD);
      assert (MPFR_EXP(s) == 0); /* check 1/2 <= s < 1 */
      /* err(s) <= l * 2^(-m) */
      if (3 * l > (1 << b))
	b++;
      /* now 3l <= 2^b, we want 3l*ulp(t) <= 2^(-m)
	 i.e. b+EXP(t)-PREC(t) <= -m */
      prec_t = m + MPFR_EXP(t) + b;
      if (prec_t > 0)
	mpfr_round (t, GMP_RNDN, prec_t);
    }

  mpfr_clear (t);

  return l;
}