1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
|
/* mpfr_div -- divide two floating-point numbers
Copyright 1999, 2001 Free Software Foundation.
This file is part of the MPFR Library.
The MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or (at your
option) any later version.
The MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the MPFR Library; see the file COPYING. If not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
MA 02111-1307, USA. */
#include "gmp.h"
#include "gmp-impl.h"
#include "longlong.h"
#include "mpfr.h"
#include "mpfr-impl.h"
int
mpfr_div (mpfr_ptr q, mpfr_srcptr u, mpfr_srcptr v, mp_rnd_t rnd_mode)
{
mp_srcptr up, vp, bp;
mp_size_t usize, vsize;
mp_ptr ap, qp, rp;
mp_size_t asize, bsize, qsize, rsize;
mp_exp_t qexp;
mp_rnd_t rnd_mode1, rnd_mode2;
mp_size_t err, k;
mp_limb_t near;
int inex, sh, can_round, can_round2, sign_quotient;
unsigned int cc = 0, rw;
TMP_DECL (marker);
/**************************************************************************
* *
* This part of the code deals with special cases *
* *
**************************************************************************/
if (MPFR_IS_NAN(u) || MPFR_IS_NAN(v))
{
MPFR_SET_NAN(q);
MPFR_RET_NAN;
}
MPFR_CLEAR_NAN(q);
sign_quotient = MPFR_SIGN(u) * MPFR_SIGN(v);
if (MPFR_SIGN(q) != sign_quotient)
MPFR_CHANGE_SIGN(q);
if (MPFR_IS_INF(u))
{
if (MPFR_IS_INF(v))
{
MPFR_SET_NAN(q);
MPFR_RET_NAN;
}
else
{
MPFR_SET_INF(q);
MPFR_RET(0);
}
}
else
if (MPFR_IS_INF(v))
{
MPFR_CLEAR_INF(q);
MPFR_SET_ZERO(q);
MPFR_RET(0);
}
MPFR_CLEAR_INF(q); /* clear Inf flag */
if (MPFR_IS_ZERO(v))
{
if (MPFR_IS_ZERO(u))
{
MPFR_SET_NAN(q);
MPFR_RET_NAN;
}
else
{
MPFR_SET_INF(q);
MPFR_RET(0);
}
}
if (MPFR_IS_ZERO(u))
{
MPFR_SET_ZERO(q);
MPFR_RET(0);
}
/**************************************************************************
* *
* End of the part concerning special values. *
* *
**************************************************************************/
up = MPFR_MANT(u);
vp = MPFR_MANT(v);
TMP_MARK (marker);
usize = MPFR_ESIZE(u);
vsize = MPFR_ESIZE(v);
/**************************************************************************
* *
* First try to use only part of u, v. If this is not sufficient, *
* use the full u and v, to avoid long computations eg. in the case *
* u = v. *
* *
**************************************************************************/
/* The dividend is a, length asize. The divisor is b, length bsize. */
qsize = (MPFR_PREC(q) + 3)/BITS_PER_MP_LIMB + 1;
if (vsize < qsize)
{
bsize = vsize;
bp = vp;
}
else
{
bsize = qsize;
bp = (mp_srcptr)vp + vsize - qsize;
}
asize = bsize + qsize;
ap = (mp_ptr) TMP_ALLOC(asize * BYTES_PER_MP_LIMB);
if (asize > usize)
{
MPN_COPY(ap + asize - usize, up, usize);
MPN_ZERO(ap, asize - usize);
}
else
MPN_COPY(ap, up + usize - asize, asize);
/* Allocate limbs for quotient and remainder. */
qp = (mp_ptr) TMP_ALLOC ((qsize + 1) * BYTES_PER_MP_LIMB);
rp = (mp_ptr) TMP_ALLOC (bsize * BYTES_PER_MP_LIMB);
rsize = bsize;
mpn_tdiv_qr(qp, rp, 0, ap, asize, bp, bsize);
/* Estimate number of correct bits. */
err = qsize * BITS_PER_MP_LIMB;
if (bsize < vsize) err -= 2; else if (asize < usize) err --;
/* We want to check if rounding is possible, but without normalizing
because we might have to divide again if rounding is impossible, or
if the result might be exact. We have however to mimic normalization */
if (qp[qsize] != 0) { sh = -1; }
else { count_leading_zeros(sh, qp[qsize - 1]); }
/*
To detect asap if the result is inexact, so as to avoid doing the
division completely, we perform the following check :
- if rnd_mode == GMP_RNDN, and the result is exact, we are unable
to round simultaneously to zero and to infinity ;
- if rnd_mode == GMP_RNDN, and if we can round to zero with one extra
bit of precision, we can decide rounding. Hence in that case, check
as in the case of GMP_RNDN, with one extra bit. Note that in the case
of close to even rounding we shall do the division completely, but
this is necessary anyway : we need to know whether this is really
even rounding or not.
*/
if (rnd_mode == GMP_RNDN)
{
rnd_mode1 = GMP_RNDZ;
near = 1;
}
else
{
rnd_mode1 = rnd_mode;
near = 0;
}
sh += near;
can_round = mpfr_can_round_raw(qp, qsize + 1, sign_quotient, err + sh +
BITS_PER_MP_LIMB, GMP_RNDN, rnd_mode1,
MPFR_PREC(q) + sh + BITS_PER_MP_LIMB);
switch (rnd_mode1)
{
case GMP_RNDU : rnd_mode2 = GMP_RNDD; break;
case GMP_RNDD : rnd_mode2 = GMP_RNDU; break;
case GMP_RNDZ : rnd_mode2 = sign_quotient == 1 ? GMP_RNDU : GMP_RNDD;
break;
default : rnd_mode2 = GMP_RNDZ;
}
can_round2 = mpfr_can_round_raw(qp, qsize + 1, sign_quotient, err + sh +
BITS_PER_MP_LIMB, GMP_RNDN, rnd_mode2,
MPFR_PREC(q) + sh + BITS_PER_MP_LIMB);
sh -= near;
/* If either can_round or can_round2 is 0, either we cannot round or
the result might be exact. If asize >= usize and bsize >= vsize, we
can just check this by looking at the remainder. Otherwise, we
have to correct our first approximation. */
if ((!can_round || !can_round2) && (asize < usize || bsize < vsize))
{
int b = 0;
mp_ptr rem, rem2;
/**************************************************************************
* *
* The attempt to use only part of u and v failed. We first compute a *
* correcting term, then perform the full division. *
* Put u = uhi + ulo, v = vhi + vlo. We have uhi = vhi * qp + rp, *
* thus u - qp * v = rp + ulo - qp * vlo, that we shall divide by v. *
* *
**************************************************************************/
rsize = qsize + 1 +
(usize - asize > vsize - bsize
? usize - asize
: vsize - bsize);
/*
TODO : One operand is probably enough, but then we have to
perform one further comparison (compute first vlo * q,
try to substract r, try to substract ulo. Which is best ?
NB : ulo and r do not overlap. Draw advantage of this
[eg. HI(vlo*q) = r => compare LO(vlo*q) with b.]
*/
rem = TMP_ALLOC(rsize * BYTES_PER_MP_LIMB);
rem2 = TMP_ALLOC(rsize * BYTES_PER_MP_LIMB);
rem[rsize - 1] = rem2 [rsize - 1] = 0;
if (bsize < vsize)
{
/* Compute vlo * q */
if (qsize + 1 > vsize - bsize)
mpn_mul(rem + rsize - vsize - qsize - 1 + bsize,
qp, qsize + 1, vp, vsize - bsize);
else
mpn_mul(rem + rsize - vsize - qsize - 1 + bsize,
vp, vsize - bsize, qp, qsize + 1);
MPN_ZERO(rem, rsize - vsize - qsize - 1 + bsize);
}
else MPN_ZERO(rem, rsize);
/* Compute ulo + r. The two of them do not overlap. */
MPN_COPY(rem2 + rsize - 1 - qsize, rp, bsize);
if (qsize + 1 > bsize)
MPN_ZERO(rem2 + rsize - 1 - qsize + bsize, qsize + 1 - bsize);
if (asize < usize)
{
MPN_COPY(rem2 + rsize - 1 - qsize - usize + asize,
up, usize - asize);
MPN_ZERO(rem2, rsize - 1 - qsize - usize + asize);
}
else
MPN_ZERO(rem2, rsize - 1 - qsize);
b = 0;
if (mpn_cmp(rem2, rem, rsize) >= 0)
{
/* Positive correction is at most 1. */
mpn_sub_n(rem, rem2, rem, rsize);
if (rem[rsize - 1] != 0 ||
mpn_cmp(rem + rsize - vsize - 1, vp, vsize) >= 0)
{
rem[rsize - 1] -=
mpn_sub_n(rem + rsize - vsize - 1,
rem + rsize - vsize - 1,
vp, vsize);
qp[qsize] -= mpn_add_1(qp, qp, qsize, 1);
}
}
else
{
/* Negative correction is at most 3 */
do
{
b++;
rem2[rsize - 1] +=
mpn_add_n(rem2 + rsize - vsize - 1,
rem2 + rsize - vsize - 1, vp, vsize);
}
while (mpn_cmp(rem2, rem, rsize) < 0);
qp[qsize] -= mpn_sub_1(qp, qp, qsize, b);
mpn_sub_n(rem, rem2, rem, rsize);
}
if (qp[qsize] != 0)
sh = -1;
else
count_leading_zeros(sh, qp[qsize - 1]);
err = BITS_PER_MP_LIMB * qsize;
rp = rem;
}
/**************************************************************************
* *
* Final stuff (rounding and so.) *
* From now on : qp is the quotient [size qsize], rp the remainder *
* [size rsize]. *
**************************************************************************/
qexp = MPFR_EXP(u) - MPFR_EXP(v);
if (qp[qsize] != 0)
/* Hack : qp[qsize] is 0, 1 or 2, hence if not 0, = 2^(qp[qsize] - 1). */
{
near = mpn_rshift(qp, qp, qsize, qp[qsize]);
qp[qsize - 1] |= MP_LIMB_T_HIGHBIT; qexp += qp[qsize];
}
else
{
near = 0;
if (sh != 0)
{
mpn_lshift(qp, qp, qsize, sh);
qexp -= sh;
}
}
cc = mpfr_round_raw_generic(qp, qp, err, (sign_quotient == -1 ? 1 : 0),
MPFR_PREC(q), rnd_mode, &inex, 1);
qp += qsize - MPFR_ESIZE(q); /* 0 or 1 */
qsize = MPFR_ESIZE(q);
/*
At that point, either we were able to round from the beginning,
and know thus that the result is inexact.
Or we have performed a full division. In that case, we might still
be wrong if both
- the remainder is nonzero ;
- we are rounding to infinity or to nearest (the nasty case of even
rounding).
- inex = 0, meaning that the non-significant bits of the quotients are 0,
except when rounding to nearest (the nasty case of even rounding again).
*/
if (!can_round || !can_round2) /* Lazy case. */
{
if (inex == 0)
{
k = rsize - 1;
/* If a bit has been shifted out during normalization, hence
the remainder is nonzero. */
if (near == 0)
while (k >= 0) { if (rp[k]) break; k--; }
if (k >= 0) /* Remainder is nonzero. */
{
if ((rnd_mode == GMP_RNDD && sign_quotient == -1)
|| (rnd_mode == GMP_RNDU && sign_quotient == 1))
/* Rounding to infinity. */
{
inex = sign_quotient;
cc = 1;
}
/* rounding to zero. */
else inex = -sign_quotient;
}
}
else /* We might have to correct an even rounding if remainder
is nonzero and if even rounding was towards 0. */
if (rnd_mode == GMP_RNDN && (inex == MPFR_EVEN_INEX
|| inex == -MPFR_EVEN_INEX))
{
k = rsize - 1;
/* If a bit has been shifted out during normalization, hence
the remainder is nonzero. */
if (near == 0)
while (k >= 0)
{
if (rp[k])
break;
k--;
}
if (k >= 0) /* In fact the quotient is larger than expected */
{
inex = sign_quotient; /* To infinity, finally. */
cc = 1;
}
}
}
/* Final modification due to rounding */
if (cc)
{
sh = MPFR_PREC(q) & (BITS_PER_MP_LIMB - 1);
if (sh)
cc = mpn_add_1 (qp, qp, qsize,
MP_LIMB_T_ONE << (BITS_PER_MP_LIMB - sh));
else
cc = mpn_add_1 (qp, qp, qsize, MP_LIMB_T_ONE);
if (cc)
{
mpn_rshift (qp, qp, qsize, 1);
qp[qsize-1] |= MP_LIMB_T_HIGHBIT;
qexp++;
}
}
rw = qsize * BITS_PER_MP_LIMB - MPFR_PREC(q);
MPN_COPY(MPFR_MANT(q), qp, qsize);
TMP_FREE (marker);
MPFR_MANT(q)[0] &= ~((MP_LIMB_T_ONE << rw) - MP_LIMB_T_ONE);
MPFR_EXP(q) = qexp;
MPFR_RET(inex);
}
|