summaryrefslogtreecommitdiff
path: root/exp.c
blob: 3dc710b30fc80308a53dda83b1cbe476521b8f3d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
/* mpfr_exp -- exponential of a floating-point number

Copyright 1999, 2000, 2001, 2002, 2003 Free Software Foundation.
Contributed by the Spaces project.

This file is part of the MPFR Library.

The MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or (at your
option) any later version.

The MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
License for more details.

You should have received a copy of the GNU Lesser General Public License
along with the MPFR Library; see the file COPYING.LIB.  If not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
MA 02111-1307, USA. */

#include <stdio.h>
#include "gmp.h"
#include "gmp-impl.h"
#include "mpfr.h"
#include "mpfr-impl.h"

/* #define DEBUG */

/* use Brent's formula exp(x) = (1+r+r^2/2!+r^3/3!+...)^(2^K)*2^n
   where x = n*log(2)+(2^K)*r
   number of operations = O(K+prec(r)/K)
*/
int 
mpfr_exp (mpfr_ptr y, mpfr_srcptr x, mp_rnd_t rnd_mode) 
{
  int expx, precy;
  double d;

  if (MPFR_UNLIKELY( MPFR_IS_SINGULAR(x) ))
    {
      if (MPFR_IS_NAN(x))
	{
	  MPFR_SET_NAN(y);
	  MPFR_RET_NAN;
	}
      else if (MPFR_IS_INF(x))
	{
	  if (MPFR_IS_POS(x))
	    MPFR_SET_INF(y);
	  else
	    MPFR_SET_ZERO(y);
	  MPFR_SET_POS(y);
	  MPFR_RET(0);
	}
      else if (MPFR_IS_ZERO(x))
	return mpfr_set_ui (y, 1, GMP_RNDN);
      else
	MPFR_ASSERTN(0);
    }
  MPFR_CLEAR_FLAGS(y);

  expx = MPFR_GET_EXP (x);
  precy = MPFR_PREC(y);

  /* result is +Inf when exp(x) >= 2^(__gmpfr_emax), i.e.
     x >= __gmpfr_emax * log(2) */
  d = mpfr_get_d1 (x);
  if (d >= (double) __gmpfr_emax * LOG2)
    return mpfr_set_overflow (y, rnd_mode, 1);

  /* result is 0 when exp(x) < 1/2*2^(__gmpfr_emin), i.e.
     x < (__gmpfr_emin-1) * LOG2 */
  if (d < ((double) __gmpfr_emin - 1.0) * LOG2)
    return mpfr_set_underflow (y, rnd_mode, 1);

  /* if x < 2^(-precy), then exp(x) i.e. gives 1 +/- 1 ulp(1) */
  if (expx < -precy)
    {
      int signx = MPFR_SIGN(x);

      if (MPFR_IS_NEG_SIGN(signx) && (rnd_mode == GMP_RNDD || rnd_mode == GMP_RNDZ))
        {
          MPFR_SET_POS(y);
          mpfr_setmax (y, 0);  /* y = 1 - epsilon */
          return -1;
        }
      mpfr_setmin (y, 1);  /* y = 1 */
      if (MPFR_IS_POS_SIGN(signx) && rnd_mode == GMP_RNDU)
        {
          mp_size_t yn;
          int sh;

          yn = 1 + (MPFR_PREC(y) - 1) / BITS_PER_MP_LIMB;
          sh = (mp_prec_t) yn * BITS_PER_MP_LIMB - MPFR_PREC(y);
          MPFR_MANT(y)[0] += MP_LIMB_T_ONE << sh;
          return 1;
        }
      return -MPFR_FROM_SIGN_TO_INT(signx);
    }

  if (precy > 13000)
    return mpfr_exp3 (y, x, rnd_mode); /* O(M(n) log(n)^2) */
  else
    return mpfr_exp_2 (y, x, rnd_mode); /* O(n^(1/3) M(n)) */
}