1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
|
/* mpfr_exp_2 -- exponential of a floating-point number
using algorithms in O(n^(1/2)*M(n)) and O(n^(1/3)*M(n))
Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
Contributed by the Arenaire and Cacao projects, INRIA.
This file is part of the GNU MPFR Library.
The GNU MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The GNU MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
/* #define DEBUG */
#define MPFR_NEED_LONGLONG_H /* for count_leading_zeros */
#include "mpfr-impl.h"
static unsigned long
mpfr_exp2_aux (mpz_t, mpfr_srcptr, mp_prec_t, mp_exp_t *);
static unsigned long
mpfr_exp2_aux2 (mpz_t, mpfr_srcptr, mp_prec_t, mp_exp_t *);
static mp_exp_t
mpz_normalize (mpz_t, mpz_t, mp_exp_t);
static mp_exp_t
mpz_normalize2 (mpz_t, mpz_t, mp_exp_t, mp_exp_t);
#define MY_INIT_MPZ(x, s) { \
(x)->_mp_alloc = (s); \
PTR(x) = (mp_ptr) MPFR_TMP_ALLOC((s)*BYTES_PER_MP_LIMB); \
(x)->_mp_size = 0; }
/* if k = the number of bits of z > q, divides z by 2^(k-q) and returns k-q.
Otherwise do nothing and return 0.
*/
static mp_exp_t
mpz_normalize (mpz_t rop, mpz_t z, mp_exp_t q)
{
size_t k;
MPFR_MPZ_SIZEINBASE2 (k, z);
MPFR_ASSERTD (k == (mpfr_uexp_t) k);
if (q < 0 || (mpfr_uexp_t) k > (mpfr_uexp_t) q)
{
mpz_fdiv_q_2exp (rop, z, (unsigned long) ((mpfr_uexp_t) k - q));
return (mp_exp_t) k - q;
}
if (MPFR_UNLIKELY(rop != z))
mpz_set(rop, z);
return 0;
}
/* if expz > target, shift z by (expz-target) bits to the left.
if expz < target, shift z by (target-expz) bits to the right.
Returns target.
*/
static mp_exp_t
mpz_normalize2 (mpz_t rop, mpz_t z, mp_exp_t expz, mp_exp_t target)
{
if (target > expz)
mpz_fdiv_q_2exp (rop, z, target-expz);
else
mpz_mul_2exp(rop, z, expz-target);
return target;
}
/* use Brent's formula exp(x) = (1+r+r^2/2!+r^3/3!+...)^(2^K)*2^n
where x = n*log(2)+(2^K)*r
together with the Paterson-Stockmeyer O(t^(1/2)) algorithm for the
evaluation of power series. The resulting complexity is O(n^(1/3)*M(n)).
This function returns with the exact flags due to exp.
*/
int
mpfr_exp_2 (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd_mode)
{
long n;
unsigned long K, k, l, err; /* FIXME: Which type ? */
int error_r;
mp_exp_t exps;
mp_prec_t q, precy;
int inexact;
mpfr_t r, s;
mpz_t ss;
MPFR_ZIV_DECL (loop);
MPFR_TMP_DECL(marker);
MPFR_LOG_FUNC (("x[%#R]=%R rnd=%d", x, x, rnd_mode),
("y[%#R]=%R inexact=%d", y, y, inexact));
precy = MPFR_PREC(y);
/* Warning: we cannot use the 'double' type here, since on 64-bit machines
x may be as large as 2^62*log(2) without overflow, and then x/log(2)
is about 2^62: not every integer of that size can be represented as a
'double', thus the argument reduction would fail. */
if (MPFR_GET_EXP (x) <= -2)
/* |x| <= 0.25, thus n = round(x/log(2)) = 0 */
n = 0;
else
{
mpfr_init2 (r, sizeof (long) * CHAR_BIT);
mpfr_const_log2 (r, MPFR_RNDZ);
mpfr_div (r, x, r, MPFR_RNDN);
n = mpfr_get_si (r, MPFR_RNDN);
mpfr_clear (r);
}
MPFR_LOG_MSG (("d(x)=%1.30e n=%ld\n", mpfr_get_d1(x), n));
/* error bounds the cancelled bits in x - n*log(2) */
if (MPFR_UNLIKELY (n == 0))
error_r = 0;
else
count_leading_zeros (error_r, (mp_limb_t) SAFE_ABS (unsigned long, n));
error_r = GMP_NUMB_BITS - error_r + 2;
/* for the O(n^(1/2)*M(n)) method, the Taylor series computation of
n/K terms costs about n/(2K) multiplications when computed in fixed
point */
K = (precy < MPFR_EXP_2_THRESHOLD) ? __gmpfr_isqrt ((precy + 1) / 2)
: __gmpfr_cuberoot (4*precy);
l = (precy - 1) / K + 1;
err = K + MPFR_INT_CEIL_LOG2 (2 * l + 18);
/* add K extra bits, i.e. failure probability <= 1/2^K = O(1/precy) */
q = precy + err + K + 5;
mpfr_init2 (r, q + error_r);
mpfr_init2 (s, q + error_r);
/* the algorithm consists in computing an upper bound of exp(x) using
a precision of q bits, and see if we can round to MPFR_PREC(y) taking
into account the maximal error. Otherwise we increase q. */
MPFR_ZIV_INIT (loop, q);
for (;;)
{
MPFR_LOG_MSG (("n=%ld K=%lu l=%lu q=%lu error_r=%d\n",
n, K, l, (unsigned long) q, error_r));
/* First reduce the argument to r = x - n * log(2),
so that r is small in absolute value. We want an upper
bound on r to get an upper bound on exp(x). */
/* if n<0, we have to get an upper bound of log(2)
in order to get an upper bound of r = x-n*log(2) */
mpfr_const_log2 (s, (n >= 0) ? MPFR_RNDZ : MPFR_RNDU);
/* s is within 1 ulp of log(2) */
mpfr_mul_ui (r, s, (n < 0) ? -n : n, (n >= 0) ? MPFR_RNDZ : MPFR_RNDU);
/* r is within 3 ulps of |n|*log(2) */
if (n < 0)
MPFR_CHANGE_SIGN (r);
/* r <= n*log(2), within 3 ulps */
MPFR_LOG_VAR (x);
MPFR_LOG_VAR (r);
mpfr_sub (r, x, r, MPFR_RNDU);
/* possible cancellation here: if r is zero, increase the working
precision (Ziv's loop); otherwise, the error on r is at most
3*2^(EXP(old_r)-EXP(new_r)) ulps */
if (MPFR_IS_PURE_FP (r))
{
mp_exp_t cancel;
/* number of cancelled bits */
cancel = MPFR_GET_EXP (x) - MPFR_GET_EXP (r);
if (cancel < 0) /* this might happen in the second loop if x is
tiny negative: the initial n is 0, then in the
first loop n becomes -1 and r = x + log(2) */
cancel = 0;
while (MPFR_IS_NEG (r))
{ /* initial approximation n was too large */
n--;
mpfr_add (r, r, s, MPFR_RNDU);
}
mpfr_prec_round (r, q, MPFR_RNDU);
MPFR_LOG_VAR (r);
MPFR_ASSERTD (MPFR_IS_POS (r));
mpfr_div_2ui (r, r, K, MPFR_RNDU); /* r = (x-n*log(2))/2^K, exact */
MPFR_TMP_MARK(marker);
MY_INIT_MPZ(ss, 3 + 2*((q-1)/GMP_NUMB_BITS));
exps = mpfr_get_z_exp (ss, s);
/* s <- 1 + r/1! + r^2/2! + ... + r^l/l! */
MPFR_ASSERTD (MPFR_IS_PURE_FP (r) && MPFR_EXP (r) < 0);
l = (precy < MPFR_EXP_2_THRESHOLD)
? mpfr_exp2_aux (ss, r, q, &exps) /* naive method */
: mpfr_exp2_aux2 (ss, r, q, &exps); /* Paterson/Stockmeyer meth */
MPFR_LOG_MSG (("l=%lu q=%lu (K+l)*q^2=%1.3e\n",
l, (unsigned long) q, (K + l) * (double) q * q));
for (k = 0; k < K; k++)
{
mpz_mul (ss, ss, ss);
exps <<= 1;
exps += mpz_normalize (ss, ss, q);
}
mpfr_set_z (s, ss, MPFR_RNDN);
MPFR_SET_EXP(s, MPFR_GET_EXP (s) + exps);
MPFR_TMP_FREE(marker); /* don't need ss anymore */
/* error is at most 2^K*l, plus cancel+2 to take into account of
the error of 3*2^(EXP(old_r)-EXP(new_r)) on r */
K += MPFR_INT_CEIL_LOG2 (l) + cancel + 2;
MPFR_LOG_MSG (("before mult. by 2^n:\n", 0));
MPFR_LOG_VAR (s);
MPFR_LOG_MSG (("err=%lu bits\n", K));
if (MPFR_LIKELY (MPFR_CAN_ROUND (s, q - K, precy, rnd_mode)))
{
mpfr_clear_flags ();
inexact = mpfr_mul_2si (y, s, n, rnd_mode);
break;
}
}
MPFR_ZIV_NEXT (loop, q);
mpfr_set_prec (r, q);
mpfr_set_prec (s, q);
}
MPFR_ZIV_FREE (loop);
mpfr_clear (r);
mpfr_clear (s);
return inexact;
}
/* s <- 1 + r/1! + r^2/2! + ... + r^l/l! while MPFR_EXP(r^l/l!)+MPFR_EXPR(r)>-q
using naive method with O(l) multiplications.
Return the number of iterations l.
The absolute error on s is less than 3*l*(l+1)*2^(-q).
Version using fixed-point arithmetic with mpz instead
of mpfr for internal computations.
s must have at least qn+1 limbs (qn should be enough, but currently fails
since mpz_mul_2exp(s, s, q-1) reallocates qn+1 limbs)
*/
static unsigned long
mpfr_exp2_aux (mpz_t s, mpfr_srcptr r, mp_prec_t q, mp_exp_t *exps)
{
unsigned long l;
mp_exp_t dif, expt, expr;
mp_size_t qn;
mpz_t t, rr;
mp_size_t sbit, tbit;
MPFR_TMP_DECL(marker);
MPFR_ASSERTN (MPFR_IS_PURE_FP (r));
MPFR_TMP_MARK(marker);
qn = 1 + (q-1)/GMP_NUMB_BITS;
expt = 0;
*exps = 1 - (mp_exp_t) q; /* s = 2^(q-1) */
MY_INIT_MPZ(t, 2*qn+1);
MY_INIT_MPZ(rr, qn+1);
mpz_set_ui(t, 1);
mpz_set_ui(s, 1);
mpz_mul_2exp(s, s, q-1);
expr = mpfr_get_z_exp(rr, r); /* no error here */
l = 0;
for (;;) {
l++;
mpz_mul(t, t, rr);
expt += expr;
MPFR_MPZ_SIZEINBASE2 (sbit, s);
MPFR_MPZ_SIZEINBASE2 (tbit, t);
dif = *exps + sbit - expt - tbit;
/* truncates the bits of t which are < ulp(s) = 2^(1-q) */
expt += mpz_normalize(t, t, (mp_exp_t) q-dif); /* error at most 2^(1-q) */
mpz_fdiv_q_ui (t, t, l); /* error at most 2^(1-q) */
/* the error wrt t^l/l! is here at most 3*l*ulp(s) */
MPFR_ASSERTD (expt == *exps);
if (mpz_sgn (t) == 0)
break;
mpz_add(s, s, t); /* no error here: exact */
/* ensures rr has the same size as t: after several shifts, the error
on rr is still at most ulp(t)=ulp(s) */
MPFR_MPZ_SIZEINBASE2 (tbit, t);
expr += mpz_normalize(rr, rr, tbit);
}
MPFR_TMP_FREE(marker);
return 3*l*(l+1);
}
/* s <- 1 + r/1! + r^2/2! + ... + r^l/l! while MPFR_EXP(r^l/l!)+MPFR_EXPR(r)>-q
using Paterson-Stockmeyer algorithm with O(sqrt(l)) multiplications.
Return l.
Uses m multiplications of full size and 2l/m of decreasing size,
i.e. a total equivalent to about m+l/m full multiplications,
i.e. 2*sqrt(l) for m=sqrt(l).
Version using mpz. ss must have at least (sizer+1) limbs.
The error is bounded by (l^2+4*l) ulps where l is the return value.
*/
static unsigned long
mpfr_exp2_aux2 (mpz_t s, mpfr_srcptr r, mp_prec_t q, mp_exp_t *exps)
{
mp_exp_t expr, *expR, expt;
mp_size_t sizer;
mp_prec_t ql;
unsigned long l, m, i;
mpz_t t, *R, rr, tmp;
mp_size_t sbit, rrbit;
MPFR_TMP_DECL(marker);
/* estimate value of l */
MPFR_ASSERTD (MPFR_GET_EXP (r) < 0);
l = q / (- MPFR_GET_EXP (r));
m = __gmpfr_isqrt (l);
/* we access R[2], thus we need m >= 2 */
if (m < 2)
m = 2;
MPFR_TMP_MARK(marker);
R = (mpz_t*) MPFR_TMP_ALLOC((m + 1) * sizeof(mpz_t)); /* R[i] is r^i */
expR = (mp_exp_t*) MPFR_TMP_ALLOC((m + 1) * sizeof(mp_exp_t));
/* expR[i] is the exponent for R[i] */
sizer = MPFR_LIMB_SIZE(r);
mpz_init (tmp);
MY_INIT_MPZ (rr, sizer + 2);
MY_INIT_MPZ (t, 2 * sizer); /* double size for products */
mpz_set_ui (s, 0);
*exps = 1 - q; /* 1 ulp = 2^(1-q) */
for (i = 0 ; i <= m ; i++)
MY_INIT_MPZ (R[i], sizer + 2);
expR[1] = mpfr_get_z_exp (R[1], r); /* exact operation: no error */
expR[1] = mpz_normalize2 (R[1], R[1], expR[1], 1 - q); /* error <= 1 ulp */
mpz_mul (t, R[1], R[1]); /* err(t) <= 2 ulps */
mpz_fdiv_q_2exp (R[2], t, q - 1); /* err(R[2]) <= 3 ulps */
expR[2] = 1 - q;
for (i = 3 ; i <= m ; i++)
{
if ((i & 1) == 1)
mpz_mul (t, R[i-1], R[1]); /* err(t) <= 2*i-2 */
else
mpz_mul (t, R[i/2], R[i/2]);
mpz_fdiv_q_2exp (R[i], t, q - 1); /* err(R[i]) <= 2*i-1 ulps */
expR[i] = 1 - q;
}
mpz_set_ui (R[0], 1);
mpz_mul_2exp (R[0], R[0], q-1);
expR[0] = 1-q; /* R[0]=1 */
mpz_set_ui (rr, 1);
expr = 0; /* rr contains r^l/l! */
/* by induction: err(rr) <= 2*l ulps */
l = 0;
ql = q; /* precision used for current giant step */
do
{
/* all R[i] must have exponent 1-ql */
if (l != 0)
for (i = 0 ; i < m ; i++)
expR[i] = mpz_normalize2 (R[i], R[i], expR[i], 1-ql);
/* the absolute error on R[i]*rr is still 2*i-1 ulps */
expt = mpz_normalize2 (t, R[m-1], expR[m-1], 1-ql);
/* err(t) <= 2*m-1 ulps */
/* computes t = 1 + r/(l+1) + ... + r^(m-1)*l!/(l+m-1)!
using Horner's scheme */
for (i = m-1 ; i-- != 0 ; )
{
mpz_fdiv_q_ui (t, t, l+i+1); /* err(t) += 1 ulp */
mpz_add (t, t, R[i]);
}
/* now err(t) <= (3m-2) ulps */
/* now multiplies t by r^l/l! and adds to s */
mpz_mul (t, t, rr);
expt += expr;
expt = mpz_normalize2 (t, t, expt, *exps);
/* err(t) <= (3m-1) + err_rr(l) <= (3m-2) + 2*l */
MPFR_ASSERTD (expt == *exps);
mpz_add (s, s, t); /* no error here */
/* updates rr, the multiplication of the factors l+i could be done
using binary splitting too, but it is not sure it would save much */
mpz_mul (t, rr, R[m]); /* err(t) <= err(rr) + 2m-1 */
expr += expR[m];
mpz_set_ui (tmp, 1);
for (i = 1 ; i <= m ; i++)
mpz_mul_ui (tmp, tmp, l + i);
mpz_fdiv_q (t, t, tmp); /* err(t) <= err(rr) + 2m */
l += m;
if (MPFR_UNLIKELY (mpz_sgn (t) == 0))
break;
expr += mpz_normalize (rr, t, ql); /* err_rr(l+1) <= err_rr(l) + 2m+1 */
if (MPFR_UNLIKELY (mpz_sgn (rr) == 0))
rrbit = 1;
else
MPFR_MPZ_SIZEINBASE2 (rrbit, rr);
MPFR_MPZ_SIZEINBASE2 (sbit, s);
ql = q - *exps - sbit + expr + rrbit;
/* TODO: Wrong cast. I don't want what is right, but this is
certainly wrong */
}
while ((size_t) expr+rrbit > (size_t) (int) -q);
MPFR_TMP_FREE(marker);
mpz_clear(tmp);
return l*(l+4);
}
|