summaryrefslogtreecommitdiff
path: root/fma.c
blob: ac9a7a79e7b88d14a366e08b2c3d767c19ffc2ae (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
/* mpfr_fma -- Floating multiply-add

Copyright 2001, 2002, 2004, 2006 Free Software Foundation, Inc.

This file is part of the MPFR Library.

The MPFR Library is free software; you can redistribute
it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software
Foundation; either version 2.1 of the License, or (at your
option) any later version.

The MPFR Library is distributed in the hope that it will
be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE.  See the GNU Lesser General Public
License for more details.

You should have received a copy of the GNU Lesser
General Public License along with the MPFR Library; see
the file COPYING.LIB.  If not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston,
MA 02110-1301, USA. */

#include "mpfr-impl.h"

/* The computation of fma of x y and u is done by
    fma(s,x,y,z)= z + x*y = s                       */

int
mpfr_fma (mpfr_ptr s, mpfr_srcptr x, mpfr_srcptr y, mpfr_srcptr z,
          mp_rnd_t rnd_mode)
{
  int inexact;
  mpfr_t u;

  /* particular cases */
  if (MPFR_UNLIKELY( MPFR_IS_SINGULAR(x) ||
                     MPFR_IS_SINGULAR(y) ||
                     MPFR_IS_SINGULAR(z) ))
    {
      if (MPFR_IS_NAN(x) || MPFR_IS_NAN(y) || MPFR_IS_NAN(z))
        {
          MPFR_SET_NAN(s);
          MPFR_RET_NAN;
        }
      /* now neither x, y or z is NaN */
      else if (MPFR_IS_INF(x) || MPFR_IS_INF(y))
        {
          /* cases Inf*0+z, 0*Inf+z, Inf-Inf */
          if ((MPFR_IS_ZERO(y)) ||
              (MPFR_IS_ZERO(x)) ||
              (MPFR_IS_INF(z) &&
               ((MPFR_MULT_SIGN(MPFR_SIGN(x), MPFR_SIGN(y))) != MPFR_SIGN(z))))
            {
              MPFR_SET_NAN(s);
              MPFR_RET_NAN;
            }
          else if (MPFR_IS_INF(z)) /* case Inf-Inf already checked above */
            {
              MPFR_SET_INF(s);
              MPFR_SET_SAME_SIGN(s, z);
              MPFR_RET(0);
            }
          else /* z is finite */
            {
              MPFR_SET_INF(s);
              MPFR_SET_SIGN(s, MPFR_MULT_SIGN(MPFR_SIGN(x) , MPFR_SIGN(y)));
              MPFR_RET(0);
            }
        }
      /* now x and y are finite */
      else if (MPFR_IS_INF(z))
        {
          MPFR_SET_INF(s);
          MPFR_SET_SAME_SIGN(s, z);
          MPFR_RET(0);
        }
      else if (MPFR_IS_ZERO(x) || MPFR_IS_ZERO(y))
        {
          if (MPFR_IS_ZERO(z))
            {
              int sign_p;
              sign_p = MPFR_MULT_SIGN( MPFR_SIGN(x) , MPFR_SIGN(y) );
              MPFR_SET_SIGN(s,(rnd_mode != GMP_RNDD ?
                               ((MPFR_IS_NEG_SIGN(sign_p) && MPFR_IS_NEG(z))
                                ? -1 : 1) :
                               ((MPFR_IS_POS_SIGN(sign_p) && MPFR_IS_POS(z))
                                ? 1 : -1)));
              MPFR_SET_ZERO(s);
              MPFR_RET(0);
            }
          else
            return mpfr_set (s, z, rnd_mode);
        }
      else /* necessarily z is zero here */
        {
          MPFR_ASSERTD(MPFR_IS_ZERO(z));
          return mpfr_mul (s, x, y, rnd_mode);
        }
    }
  /* Useless since it is done by mpfr_add
   * MPFR_CLEAR_FLAGS(s); */

  /* if we take prec(u) >= prec(x) + prec(y), the product
     u <- x*y is always exact */
  mpfr_init2 (u, MPFR_PREC(x) + MPFR_PREC(y));
  mpfr_mul (u, x, y, GMP_RNDN); /* always exact */
  inexact = mpfr_add (s, z, u, rnd_mode);
  mpfr_clear(u);

  return inexact;
}