1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
|
/* mpfr_fma -- Floating multiply-add
Copyright 2001, 2002, 2004, 2006 Free Software Foundation, Inc.
This file is part of the MPFR Library.
The MPFR Library is free software; you can redistribute
it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software
Foundation; either version 2.1 of the License, or (at your
option) any later version.
The MPFR Library is distributed in the hope that it will
be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser
General Public License along with the MPFR Library; see
the file COPYING.LIB. If not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston,
MA 02110-1301, USA. */
#include "mpfr-impl.h"
/* The computation of fma of x y and u is done by
fma(s,x,y,z)= z + x*y = s */
int
mpfr_fma (mpfr_ptr s, mpfr_srcptr x, mpfr_srcptr y, mpfr_srcptr z,
mp_rnd_t rnd_mode)
{
int inexact;
mpfr_t u;
/* particular cases */
if (MPFR_UNLIKELY( MPFR_IS_SINGULAR(x) ||
MPFR_IS_SINGULAR(y) ||
MPFR_IS_SINGULAR(z) ))
{
if (MPFR_IS_NAN(x) || MPFR_IS_NAN(y) || MPFR_IS_NAN(z))
{
MPFR_SET_NAN(s);
MPFR_RET_NAN;
}
/* now neither x, y or z is NaN */
else if (MPFR_IS_INF(x) || MPFR_IS_INF(y))
{
/* cases Inf*0+z, 0*Inf+z, Inf-Inf */
if ((MPFR_IS_ZERO(y)) ||
(MPFR_IS_ZERO(x)) ||
(MPFR_IS_INF(z) &&
((MPFR_MULT_SIGN(MPFR_SIGN(x), MPFR_SIGN(y))) != MPFR_SIGN(z))))
{
MPFR_SET_NAN(s);
MPFR_RET_NAN;
}
else if (MPFR_IS_INF(z)) /* case Inf-Inf already checked above */
{
MPFR_SET_INF(s);
MPFR_SET_SAME_SIGN(s, z);
MPFR_RET(0);
}
else /* z is finite */
{
MPFR_SET_INF(s);
MPFR_SET_SIGN(s, MPFR_MULT_SIGN(MPFR_SIGN(x) , MPFR_SIGN(y)));
MPFR_RET(0);
}
}
/* now x and y are finite */
else if (MPFR_IS_INF(z))
{
MPFR_SET_INF(s);
MPFR_SET_SAME_SIGN(s, z);
MPFR_RET(0);
}
else if (MPFR_IS_ZERO(x) || MPFR_IS_ZERO(y))
{
if (MPFR_IS_ZERO(z))
{
int sign_p;
sign_p = MPFR_MULT_SIGN( MPFR_SIGN(x) , MPFR_SIGN(y) );
MPFR_SET_SIGN(s,(rnd_mode != GMP_RNDD ?
((MPFR_IS_NEG_SIGN(sign_p) && MPFR_IS_NEG(z))
? -1 : 1) :
((MPFR_IS_POS_SIGN(sign_p) && MPFR_IS_POS(z))
? 1 : -1)));
MPFR_SET_ZERO(s);
MPFR_RET(0);
}
else
return mpfr_set (s, z, rnd_mode);
}
else /* necessarily z is zero here */
{
MPFR_ASSERTD(MPFR_IS_ZERO(z));
return mpfr_mul (s, x, y, rnd_mode);
}
}
/* Useless since it is done by mpfr_add
* MPFR_CLEAR_FLAGS(s); */
/* if we take prec(u) >= prec(x) + prec(y), the product
u <- x*y is always exact */
mpfr_init2 (u, MPFR_PREC(x) + MPFR_PREC(y));
mpfr_mul (u, x, y, GMP_RNDN); /* always exact */
inexact = mpfr_add (s, z, u, rnd_mode);
mpfr_clear(u);
return inexact;
}
|