1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
|
/* mpfr_gamma -- gamma function
Copyright 2001, 2002, 2003, 2004, 2005 Free Software Foundation.
This file is part of the MPFR Library, and was contributed by Mathieu Dutour.
The MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or (at your
option) any later version.
The MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the MPFR Library; see the file COPYING.LIB. If not, write to
the Free Software Foundation, Inc., 51 Franklin Place, Fifth Floor, Boston,
MA 02110-1301, USA. */
/* The error analysis of gamma has been lost.
As a consequence, we can't change the algorithm...
But we may compute the exp(A-k) in the inner loop a lot faster
but less accurate, so it changes the precsion.
All MPFR tests still pass anyway */
/* #define USE_PRECOMPUTED_EXP */
#define MPFR_NEED_LONGLONG_H
#include "mpfr-impl.h"
/* We use the reflection formula
Gamma(1+t) Gamma(1-t) = - Pi t / sin(Pi (1 + t))
in order to treat the case x <= 1,
i.e. with x = 1-t, then Gamma(x) = -Pi*(1-x)/sin(Pi*(2-x))/GAMMA(2-x)
*/
int
mpfr_gamma (mpfr_ptr gamma, mpfr_srcptr x, mp_rnd_t rnd_mode)
{
mpfr_t xp, GammaTrial, tmp, tmp2;
mpz_t fact;
#ifdef USE_PRECOMPUTED_EXP
mpfr_t *tab;
#endif
mp_prec_t Prec, realprec, A, k;
int compared, inex, is_integer;
MPFR_GROUP_DECL (group);
MPFR_SAVE_EXPO_DECL (expo);
MPFR_ZIV_DECL (loop);
MPFR_LOG_FUNC (("x[%#R]=%R rnd=%d", x, x, rnd_mode),
("gamma[%#R]=%R inexact=%d", gamma, gamma, inex));
/* Trivial cases */
if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
{
if (MPFR_IS_NAN (x))
{
MPFR_SET_NAN (gamma);
MPFR_RET_NAN;
}
else if (MPFR_IS_INF (x))
{
if (MPFR_IS_NEG (x))
{
MPFR_SET_NAN (gamma);
MPFR_RET_NAN;
}
else
{
MPFR_SET_INF (gamma);
MPFR_SET_POS (gamma);
MPFR_RET (0); /* exact */
}
}
else /* x is zero */
{
MPFR_ASSERTD(MPFR_IS_ZERO(x));
MPFR_SET_INF(gamma);
MPFR_SET_SAME_SIGN(gamma, x);
MPFR_RET (0); /* exact */
}
}
is_integer = mpfr_integer_p (x);
/* gamma(x) for x a negative integer gives NaN */
if (is_integer && MPFR_IS_NEG(x))
{
MPFR_SET_NAN (gamma);
MPFR_RET_NAN;
}
compared = mpfr_cmp_ui (x, 1);
if (compared == 0)
return mpfr_set_ui (gamma, 1, rnd_mode);
/* if x is an integer that fits into an unsigned long, use mpfr_fac_ui */
if (is_integer && mpfr_fits_ulong_p (x, GMP_RNDN))
{
unsigned long int u;
u = mpfr_get_ui (x, GMP_RNDN);
return mpfr_fac_ui (gamma, u - 1, rnd_mode);
}
MPFR_SAVE_EXPO_MARK (expo);
realprec = MPFR_PREC (gamma);
realprec = realprec + MPFR_INT_CEIL_LOG2 (realprec) + 10;
MPFR_GROUP_INIT_4 (group, realprec + BITS_PER_MP_LIMB,
xp, tmp, tmp2, GammaTrial);
mpz_init (fact);
MPFR_ZIV_INIT (loop, realprec);
for (;;)
{
/* If compared < 0, we use the reflexion formula */
/* Precision stuff */
Prec = realprec + 2 * (compared < 0);
/* A = (prec_nec-0.5)*CST
CST = ln(2)/(ln(2*pi))) = 0.38
This strange formula is just to avoid any overflow */
A = (Prec/100)*38 + ((Prec%100)*38+100-38/2)/100 - 1;
/* Estimated_cancel is the amount of bit that will be flushed:
estimated_cancel = A + ecCST * A;
ecCST = {1+sup_{x\in [0,1]} x*ln((1-x)/x)}/ln(2) = 1.84
This strange formula is just to avoid any overflow */
Prec += 16 + (A + (A + (A/100)*84 + ((A%100)*84)/100));
/* FIXME: for x near 0, we want 1-x to be exact since the error
term does not seem to take into account the possible cancellation
here. Warning: if x < 0, we need one more bit. */
if (MPFR_EXP(x) < 0 && Prec <= MPFR_PREC(x) - MPFR_EXP(x))
Prec = MPFR_PREC(x) - MPFR_EXP(x) + 1;
MPFR_GROUP_REPREC_4 (group, Prec, xp, tmp, tmp2, GammaTrial);
if (compared < 0)
mpfr_sub (xp, __gmpfr_one, x, GMP_RNDN);
else
mpfr_sub (xp, x, __gmpfr_one, GMP_RNDN);
mpfr_set_ui (GammaTrial, 0, GMP_RNDN);
mpz_set_ui (fact, 1);
/* It is faster to compute exp from k=1 to A, but
it changes the order of the sum, which change the error
analysis... Don't change it too much until we recompute
the error analysis.
Another trick is to compute factorial k in a MPFR rather than a MPZ
(Once again it changes the error analysis) */
#ifdef USE_PRECOMPUTED_EXP
tab = (*__gmp_allocate_func) (sizeof (mpfr_t)*(A-1));
mpfr_init2 (tab[0], Prec);
mpfr_exp (tab[0], __gmpfr_one, GMP_RNDN);
for (k = 1; k < A-1; k++)
{
mpfr_init2 (tab[k], Prec);
mpfr_mul (tab[k], tab[k-1], tab[0], GMP_RNDN);
}
#endif
for (k = 1; k < A; k++)
{
#ifdef USE_PRECOMPUTED_EXP
mpfr_set (tmp2, tab[A-k-1], GMP_RNDN);
#else
mpfr_set_ui (tmp, A - k, GMP_RNDN);
mpfr_exp (tmp2, tmp, GMP_RNDN);
#endif
/* tmp2 = exp(A-k) */
mpfr_ui_pow_ui (tmp, A - k, k - 1, GMP_RNDN);
/* tmp = (A-k)^(k-1) */
mpfr_mul (tmp2, tmp2, tmp, GMP_RNDN);
/* tmp2 = (A-k)^(k-1) * exp(A-k) */
mpfr_sqrt_ui (tmp, A - k, GMP_RNDN);
mpfr_mul (tmp2, tmp2, tmp, GMP_RNDN);
/* tmp2 = sqrt(A-k) * (A-k)^(k-1) * exp(A-k) */
if (k >= 3)
{
/* mpfr_fac_ui (tmp, k-1, GMP_RNDN); */
mpz_mul_ui (fact, fact, k - 1);
/* fact = (k-1)! */
mpfr_set_z (tmp, fact, GMP_RNDN);
mpfr_div (tmp2, tmp2, tmp, GMP_RNDN);
}
/* tmp2 = sqrt(A-k) * (A-k)^(k-1) * exp(A-k) / (k-1)! */
mpfr_add_ui (tmp, xp, k, GMP_RNDN);
mpfr_div (tmp2, tmp2, tmp, GMP_RNDN);
/* tmp2 = sqrt(A-k) * (A-k)^(k-1) * exp(A-k) / (k-1)! / (x+k) */
if ((k & 1) == 0)
MPFR_CHANGE_SIGN (tmp2);
/* (-1)^(k-1)*sqrt(A-k) * (A-k)^(k-1) * exp(A-k) / (k-1)! / (x+k) */
mpfr_add (GammaTrial, GammaTrial, tmp2, GMP_RNDN);
}
#ifdef DEBUG
printf("GammaTrial =");
mpfr_out_str (stdout, 10, 0, GammaTrial, GMP_RNDD);
printf ("\n");
#endif
mpfr_const_pi (tmp, GMP_RNDN);
mpfr_mul_2ui (tmp, tmp, 1, GMP_RNDN); /* 2*Pi */
mpfr_sqrt (tmp, tmp, GMP_RNDN); /* sqrt(2*Pi) */
mpfr_add (GammaTrial, GammaTrial, tmp, GMP_RNDN);
/* sqrt(2*Pi) + sum((-1)^(k-1)*sqrt(A-k)*(A-k)^(k-1)*exp(A-k)
/(k-1)!/(xp+k),k=1..A-1) */
mpfr_add_ui (tmp2, xp, A, GMP_RNDN); /* xp+A */
mpfr_set_ui_2exp (tmp, 1, -1, GMP_RNDN); /* tmp= 1/2 */
mpfr_add (tmp, tmp, xp, GMP_RNDN); /* xp+1/2 */
mpfr_pow (tmp, tmp2, tmp, GMP_RNDN); /* (xp+A)^(xp+1/2) */
mpfr_mul (GammaTrial, GammaTrial, tmp, GMP_RNDN);
/* (xp+A)^(xp+1/2) * [sqrt(2*Pi) +
sum((-1)^(k-1)*(A-k)^(k-1/2)*exp(A-k)/(k-1)!/(xp+k),k=1..A-1)] */
mpfr_neg (tmp, tmp2, GMP_RNDN); /* -(xp+A) */
mpfr_exp (tmp, tmp, GMP_RNDN); /* exp(-xp-A) */
mpfr_mul (GammaTrial, GammaTrial, tmp, GMP_RNDN);
if (compared < 0)
{
mpfr_const_pi (tmp2, GMP_RNDN);
mpfr_sub (tmp, x, __gmpfr_one, GMP_RNDN);
mpfr_mul (tmp, tmp2, tmp, GMP_RNDN);
mpfr_div (GammaTrial, tmp, GammaTrial, GMP_RNDN);
mpfr_sin (tmp, tmp, GMP_RNDN);
mpfr_div (GammaTrial, GammaTrial, tmp, GMP_RNDN);
}
#ifdef DEBUG
printf("GammaTrial =");
mpfr_out_str (stdout, 10, 0, GammaTrial, GMP_RNDD);
printf ("\n");
#endif
#ifdef USE_PRECOMPUTED_EXP
for (k = 0 ; k < A-1 ; k++)
mpfr_clear (tab[k]);
(*__gmp_free_func) (tab, sizeof (mpfr_t) * (A-1) );
#endif
if (mpfr_can_round (GammaTrial, realprec, GMP_RNDD, GMP_RNDZ,
MPFR_PREC(gamma) + (rnd_mode == GMP_RNDN)))
break;
MPFR_ZIV_NEXT (loop, realprec);
}
MPFR_ZIV_FREE (loop);
inex = mpfr_set (gamma, GammaTrial, rnd_mode);
MPFR_GROUP_CLEAR (group);
mpz_clear (fact);
MPFR_SAVE_EXPO_FREE (expo);
return mpfr_check_range(gamma, inex, rnd_mode);
}
|