1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
|
/* mpfr_gamma -- gamma function
Copyright 2001, 2002, 2003 Free Software Foundation.
This file is part of the MPFR Library, and was contributed by Mathieu Dutour.
The MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or (at your
option) any later version.
The MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the MPFR Library; see the file COPYING.LIB. If not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
MA 02111-1307, USA. */
#ifdef DEBUG
#include <stdio.h>
#include <stdlib.h>
#endif
#include "gmp.h"
#include "gmp-impl.h"
#include "mpfr.h"
#include "mpfr-impl.h"
/* We use the reflection formula
Gamma(1+t) Gamma(1-t) = - Pi t / sin(Pi (1 + t))
in order to treat the case x <= 1,
i.e. if x = 1-t, then Gamma(x) = -Pi*(1-x)/sin(Pi*(2-x))/GAMMA(2-x)
*/
#define CST 0.38 /* CST=ln(2)/(ln(2*pi)) */
#define zCST 0.26 /* zCST=1/(2*ln(2*pi)) */
#define ecCST 1.84 /* {1+sup_{x\in [0,1]} x*ln((1-x)/x)}/ln(2) */
int
mpfr_gamma (mpfr_ptr gamma, mpfr_srcptr x, mp_rnd_t rnd_mode)
{
mpfr_t xp;
mpfr_t product;
mpfr_t the_pi;
mpfr_t GammaTrial;
mpfr_t tmp, tmp2;
mp_prec_t Prec;
mp_prec_t prec_gamma;
mp_prec_t prec_nec;
int good = 0;
double C;
mp_prec_t A, N, estimated_cancel;
mp_prec_t realprec;
int compared;
int k;
int sign;
int inex;
/* Trivial cases */
if (MPFR_IS_NAN(x))
{
MPFR_SET_NAN(gamma);
MPFR_RET_NAN;
}
if (MPFR_IS_INF(x))
{
if (MPFR_SIGN(x) < 0)
{
MPFR_SET_NAN(gamma);
MPFR_RET_NAN;
}
else
{
MPFR_CLEAR_NAN(gamma);
MPFR_SET_INF(gamma);
MPFR_SET_POS(gamma);
return 0; /* exact */
}
}
if (MPFR_IS_ZERO(x))
{
MPFR_CLEAR_NAN(gamma);
MPFR_SET_INF(gamma);
MPFR_SET_SAME_SIGN(gamma, x);
return 0; /* exact */
}
/* Set x_p=x if x> 1 else set x_p=2-x */
prec_gamma = MPFR_PREC (gamma);
compared = mpfr_cmp_ui (x, 1);
if (compared == 0)
return mpfr_set_ui (gamma, 1, rnd_mode);
realprec = prec_gamma + 10;
mpfr_init2 (xp, 2);
while (!good)
{
/* Precision stuff */
prec_nec = compared < 0 ?
2 + realprec /* We will use the reflexion formula! */
: realprec;
C = (double)(((double) prec_nec)*CST-0.5);
A = (mp_prec_t) C;
N = A - 1;
#ifdef DEBUG
printf("C=%u", (int)C);
printf(" A=%u", (int)A);
printf(" N=%u", (int)N);
printf("\n");
#endif
/* estimated_cancel is the amount of bit that will be flushed */
estimated_cancel= (mp_prec_t) (ecCST * (double) A + 1.0);
Prec = prec_nec + estimated_cancel + 20;
mpfr_set_prec (xp, Prec);
if (compared < 0)
{
mpfr_ui_sub (xp, 1, x, GMP_RNDN);
}
else
{
mpfr_sub_ui (xp, x, 1, GMP_RNDN);
}
/* Initialisation */
mpfr_init2(tmp, Prec);
mpfr_init2(tmp2, Prec);
mpfr_init2(the_pi, Prec);
mpfr_init2(product, Prec);
mpfr_init2(GammaTrial, Prec);
mpfr_set_ui(GammaTrial, 0, GMP_RNDN);
sign = 1;
for (k = 1; k <= N; k++)
{
mpfr_set_ui(tmp, A-k, GMP_RNDN);
mpfr_exp(product, tmp, GMP_RNDN);
mpfr_ui_pow_ui(tmp, A-k, k-1, GMP_RNDN);
mpfr_mul(product, product, tmp, GMP_RNDN);
mpfr_sqrt_ui(tmp, A-k, GMP_RNDN);
mpfr_mul(product, product, tmp, GMP_RNDN);
mpfr_fac_ui(tmp, k-1, GMP_RNDN);
mpfr_div(product, product, tmp, GMP_RNDN);
mpfr_add_ui(tmp, xp, k, GMP_RNDN);
mpfr_div(product, product, tmp, GMP_RNDN);
sign = -sign;
if (sign == 1)
{
mpfr_neg(product, product, GMP_RNDN);
#ifdef DEBUG
/* printf(" k=%u", k);
printf("\n");*/
#endif
}
mpfr_add(GammaTrial, GammaTrial, product, GMP_RNDN);
}
#ifdef DEBUG
printf("GammaTrial =");
mpfr_out_str (stdout, 10, 0, GammaTrial, GMP_RNDD);
printf ("\n");
#endif
mpfr_const_pi(the_pi, GMP_RNDN);
mpfr_const_pi(tmp, GMP_RNDN);
mpfr_mul_2ui(tmp, tmp, 1, GMP_RNDN);
mpfr_sqrt(tmp, tmp, GMP_RNDN);
mpfr_add(GammaTrial, GammaTrial, tmp, GMP_RNDN);
mpfr_add_ui(tmp2, xp, A, GMP_RNDN);
mpfr_set_ui(tmp, 1, GMP_RNDN);
mpfr_div_2ui(tmp, tmp, 1, GMP_RNDN);
mpfr_add(tmp, tmp, xp, GMP_RNDN);
mpfr_pow(tmp, tmp2, tmp, GMP_RNDN);
mpfr_mul(GammaTrial, GammaTrial, tmp, GMP_RNDN);
mpfr_neg(tmp, tmp2, GMP_RNDN);
mpfr_exp(tmp, tmp, GMP_RNDN);
mpfr_mul(GammaTrial, GammaTrial, tmp, GMP_RNDN);
if (compared < 0)
{
mpfr_sub_ui (tmp, x, 1, GMP_RNDN);
mpfr_mul (tmp, the_pi, tmp, GMP_RNDN);
mpfr_div (GammaTrial, tmp, GammaTrial, GMP_RNDN);
mpfr_sin (tmp, tmp, GMP_RNDN);
mpfr_div (GammaTrial, GammaTrial, tmp, GMP_RNDN);
}
#ifdef DEBUG
printf("GammaTrial =");
mpfr_out_str (stdout, 10, 0, GammaTrial, GMP_RNDD);
printf ("\n");
#endif
if (mpfr_can_round (GammaTrial, realprec, GMP_RNDD, GMP_RNDZ,
MPFR_PREC(gamma) + (rnd_mode == GMP_RNDN)))
{
inex = mpfr_set (gamma, GammaTrial, rnd_mode);
good = 1;
}
else
{
realprec += __gmpfr_ceil_log2 ((double) realprec);
#ifdef DEBUG
printf("RETRY\n");
#endif
}
mpfr_clear(tmp);
mpfr_clear(tmp2);
mpfr_clear(the_pi);
mpfr_clear(product);
mpfr_clear(GammaTrial);
}
mpfr_clear (xp);
return inex; /* inexact result */
}
|