1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
|
/* mpfr_gamma -- gamma function
Copyright 2001 Free Software Foundation.
This file is part of the MPFR Library, and was contributed by Mathieu Dutour.
The MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or (at your
option) any later version.
The MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the MPFR Library; see the file COPYING.LIB. If not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
MA 02111-1307, USA. */
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "gmp.h"
#include "gmp-impl.h"
#include "mpfr.h"
#include "mpfr-impl.h"
int mpfr_gamma _PROTO ((mpfr_ptr, mpfr_srcptr, mp_rnd_t));
/* We use the reflection formula
Gamma(1+x)Gamma(1-x)=\pi x/(sin(\pi x))
in order to treat the case x<=1 */
#define CST 0.38 /* CST=ln(2)/(ln(2*pi)) */
#define zCST 0.26 /* zCST=1/(2*ln(2*pi)) */
int
#if __STDC__
mpfr_gamma (mpfr_ptr gamma, mpfr_srcptr x, mp_rnd_t rnd_mode)
#else
mpfr_gamma (gamma, x, rnd_mode)
mpfr_ptr gamma;
mpfr_srcptr x;
mp_rnd_t rnd_mode;
#endif
{
mpfr_t xp;
mpfr_t product;
mpfr_t driv;
mpfr_t xminusone;
mpfr_t the_pi_constant;
mpfr_t Csin, Ccos;
mpfr_t GammaTrial;
int reflex;
mpfr_t tmp, tmp2;
int Prec;
int Prec_nec;
int prec_gamma;
int prec_nec;
int good = 0;
double C;
long A, N;
int realprec;
int estimated_delta;
int compared;
int compar;
int factorial_case;
int k;
/* Trivial cases */
if (MPFR_IS_NAN(x))
{
MPFR_SET_NAN(gamma);
return 1;
}
if (!MPFR_NOTZERO(x))
{
MPFR_SET_INF(gamma);
return 1;
}
if (MPFR_IS_INF(x))
{
MPFR_SET_INF(gamma);
return 1;
}
/* Set x_p=x if x> 1 else set x_p=2-x */
prec_gamma = MPFR_PREC(gamma);
compared = mpfr_cmp_ui(x, 1);
if (compared == 0)
{
mpfr_set_ui(gamma, 1, rnd_mode);
return 1;
}
if (compared == -1)
{
prec_nec = 2+prec_gamma;
reflex = 1;
return 1;
}
else
{
prec_nec = prec_gamma;
reflex = 0;
return 1;
}
realprec = prec_nec+10;
while (!good){
C = ((double) realprec)*CST-0.5;
A = (long) ceil(C-zCST*log(C));
N = A-1;
/* Compute the correct estimated_delta as a function of realprec */
Prec = realprec+estimated_delta;
mpfr_init2(xp, Prec);
if (compared == -1)
{
mpfr_ui_sub(xp, 2, x, GMP_RNDN);
}
else
{
mpfr_set(xp, x, GMP_RNDN);
}
/* Initialisation */
mpfr_init2(product, Prec);
mpfr_init2(driv, Prec);
mpfr_init2(tmp, Prec);
mpfr_set(driv, xp, GMP_RNDN);
mpfr_set_ui(product, 1, GMP_RNDN);
/* We use a naugthy algorithm to reduce to the domain 1<=x <2*/
while (1)
{
compar = mpfr_cmp_ui(driv, 2);
if (compar == 0) /* the factorial in fact */
{
mpfr_mul_ui(GammaTrial, product, 2, GMP_RNDN);
factorial_case = 1;
break;
}
if (compar == -1)
{
factorial_case = 0;
break;
}
mpfr_sub_ui(driv, driv, 1, GMP_RNDN);
mpfr_mul(product, product, driv, GMP_RNDN);
}
/* now we run into the trivial case */
if (factorial_case == 0 && reflex == 1)
{
mpfr_clear(product);
mpfr_clear(driv);
mpfr_clear(tmp);
MPFR_SET_INF(gamma);
return 1;
}
mpfr_init2(GammaTrial, Prec);
if (factorial_case == 0)
{
/* compute the Gamma for 1< driv < 2 */
mpfr_init2(tmp2, Prec);
mpfr_add_ui(tmp2, driv,6*N, GMP_RNDN);
mpfr_ui_div(tmp, 1, tmp2, GMP_RNDN);
for(k=6*N; k>=1; k--)
{
mpfr_mul_ui(tmp, tmp, N, GMP_RNDN);
mpfr_neg(tmp, tmp, GMP_RNDN);
mpfr_div_ui(tmp, tmp, k, GMP_RNDN);
mpfr_add_ui(tmp2, driv, k-1, GMP_RNDN);
mpfr_ui_div(tmp2, 1, tmp2, GMP_RNDN);
mpfr_add(tmp, tmp, tmp2, GMP_RNDN);
}
mpfr_set_ui(tmp2, N, GMP_RNDN);
mpfr_log(tmp2, tmp2, GMP_RNDN);
mpfr_mul(tmp2, tmp2, driv, GMP_RNDN);
mpfr_exp(tmp2, tmp2, GMP_RNDN);
mpfr_mul(tmp, tmp2, tmp, GMP_RNDN);
mpfr_mul(GammaTrial, tmp, product, GMP_RNDN);
}
if (reflex == 1)
{
mpfr_init2(xminusone, Prec);
mpfr_init2(Csin, Prec);
mpfr_init2(Ccos, Prec);
mpfr_sub_ui(xminusone, x, 1, GMP_RNDN);
mpfr_const_pi(the_pi_constant, Prec_nec);
mpfr_mul(tmp, the_pi_constant, xminusone, GMP_RNDN);
mpfr_sin(Csin, tmp, GMP_RNDN);
mpfr_cos(Ccos, tmp, GMP_RNDN);
mpfr_div(tmp, tmp, Csin, GMP_RNDN);
mpfr_neg(tmp, tmp, GMP_RNDN);
mpfr_div(GammaTrial, tmp, GammaTrial, GMP_RNDN);
}
if (mpfr_can_round(GammaTrial, realprec, GMP_RNDD, rnd_mode, MPFR_PREC(gamma)))
{
mpfr_set(gamma, GammaTrial, rnd_mode);
good = 1;
}
else
{
realprec += __gmpfr_ceil_log2 ((double) realprec);
#ifdef DEBUG
printf("RETRY\n");
#endif
}
mpfr_clear(tmp);
mpfr_clear(driv);
mpfr_clear(product);
mpfr_clear(GammaTrial);
if (reflex == 1)
{
mpfr_clear(xminusone);
mpfr_clear(Csin);
mpfr_clear(Ccos);
}
}
mpfr_clear(xp);
return 1; /* inexact result */
}
|