1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
|
/* mpfr_get_d -- convert a multiple precision floating-point number
to a machine double precision float
Copyright 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
This file is part of the MPFR Library.
The MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or (at your
option) any later version.
The MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the MPFR Library; see the file COPYING.LIB. If not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
MA 02111-1307, USA. */
#include <float.h>
#ifndef NO_MATH_DEFS
#include <math.h>
#endif
#include "gmp.h"
#include "gmp-impl.h"
#include "longlong.h"
#include "mpfr.h"
#include "mpfr-impl.h"
#include "mpfr-math.h"
static double mpfr_scale2 _PROTO ((double, int));
#define IEEE_DBL_MANT_DIG 53
/* multiplies 1/2 <= d <= 1 by 2^exp */
static double
mpfr_scale2 (double d, int exp)
{
#if _GMP_IEEE_FLOATS
{
union ieee_double_extract x;
if (d == 1.0)
{
d = 0.5;
exp ++;
}
/* now 1/2 <= d < 1 */
/* infinities and zeroes have already been checked */
MPFR_ASSERTN(-1073 <= exp && exp <= 1025);
x.d = d;
if (exp < -1021) /* subnormal case */
{
x.s.exp += exp + 52;
x.d *= DBL_EPSILON;
}
else /* normalized case */
{
x.s.exp += exp;
}
return x.d;
}
#else
{
double factor;
if (exp < 0)
{
factor = 0.5;
exp = -exp;
}
else
{
factor = 2.0;
}
while (exp != 0)
{
if ((exp & 1) != 0)
d *= factor;
exp >>= 1;
factor *= factor;
}
return d;
}
#endif
}
/* Assumes IEEE-754 double precision; otherwise, only an approximated
result will be returned, without any guaranty (and special cases
such as NaN must be avoided if not supported). */
double
mpfr_get_d3 (mpfr_srcptr src, mp_exp_t e, mp_rnd_t rnd_mode)
{
double d;
int negative;
if (MPFR_IS_NAN(src))
return MPFR_DBL_NAN;
negative = MPFR_SIGN(src) < 0;
if (MPFR_IS_INF(src))
return negative ? MPFR_DBL_INFM : MPFR_DBL_INFP;
if (MPFR_IS_ZERO(src))
return negative ? -0.0 : 0.0;
/* the smallest normalized number is 2^(-1022)=0.1e-1021, and the smallest
subnormal is 2^(-1074)=0.1e-1073 */
if (e < -1073)
{
/* Note: Avoid using a constant expression DBL_MIN * DBL_EPSILON
as this gives 0 instead of the correct result with gcc on some
Alpha machines. */
d = negative ?
(rnd_mode == GMP_RNDD ||
(rnd_mode == GMP_RNDN && mpfr_cmp_si_2exp(src, -1, -1075) < 0)
? -DBL_MIN : -0.0) :
(rnd_mode == GMP_RNDU ||
(rnd_mode == GMP_RNDN && mpfr_cmp_si_2exp(src, 1, -1075) > 0)
? DBL_MIN : 0.0);
if (d != 0.0)
d *= DBL_EPSILON;
}
/* the largest normalized number is 2^1024*(1-2^(-53))=0.111...111e1024 */
else if (e > 1024)
{
d = negative ?
(rnd_mode == GMP_RNDZ || rnd_mode == GMP_RNDU ?
-DBL_MAX : MPFR_DBL_INFM) :
(rnd_mode == GMP_RNDZ || rnd_mode == GMP_RNDD ?
DBL_MAX : MPFR_DBL_INFP);
}
else
{
int nbits;
mp_size_t np, i;
mp_ptr tp;
int carry;
nbits = IEEE_DBL_MANT_DIG; /* 53 */
if (e < -1021) /* in the subnormal case, compute the exact number of
significant bits */
{
nbits += (1021 + e);
MPFR_ASSERTN(nbits >= 1);
}
np = (nbits - 1) / BITS_PER_MP_LIMB;
tp = (mp_ptr) (*__gmp_allocate_func) ((np + 1) * BYTES_PER_MP_LIMB);
carry = mpfr_round_raw (tp, MPFR_MANT(src), MPFR_PREC(src), negative,
nbits, rnd_mode, (int *) 0);
if (carry)
d = 1.0;
else
{
/* Warning: the rounding may still be incorrect in the rounding
to the nearest mode when the result is a subnormal because of
a double rounding (-> 53 bits -> final precision). */
d = (double) tp[0] / MP_BASE_AS_DOUBLE;
for (i = 1; i <= np; i++)
d = (d + tp[i]) / MP_BASE_AS_DOUBLE;
/* d is the mantissa (between 1/2 and 1) of the argument rounded
to 53 bits */
}
d = mpfr_scale2 (d, e);
if (negative)
d = -d;
(*__gmp_free_func) (tp, (np + 1) * BYTES_PER_MP_LIMB);
}
return d;
}
/* Note: do not read the exponent if it has no meaning (avoid possible
traps on some implementations). */
double
mpfr_get_d (mpfr_srcptr src, mp_rnd_t rnd_mode)
{
return mpfr_get_d3 (src, MPFR_IS_FP(src) && MPFR_NOTZERO(src) ?
MPFR_EXP(src) : 0, rnd_mode);
}
double
mpfr_get_d1 (mpfr_srcptr src)
{
return mpfr_get_d3 (src, MPFR_IS_FP(src) && MPFR_NOTZERO(src) ?
MPFR_EXP(src) : 0, __gmp_default_rounding_mode);
}
|