summaryrefslogtreecommitdiff
path: root/hypot.c
blob: 013ade76cc39f56adfaba67cfe6fe865deb5ff0d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
/* mpfr_hypot -- Euclidean distance

Copyright 2001, 2002, 2003, 2004 Free Software Foundation, Inc.

This file is part of the MPFR Library.

The MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or (at your
option) any later version.

The MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
License for more details.

You should have received a copy of the GNU Lesser General Public License
along with the MPFR Library; see the file COPYING.LIB.  If not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
MA 02111-1307, USA. */


#include "mpfr-impl.h"

 /* The computation of hypot of x and y is done by

    hypot(x,y)= sqrt(x^2+y^2) = z
 */

int
mpfr_hypot (mpfr_ptr z, mpfr_srcptr x , mpfr_srcptr y , mp_rnd_t rnd_mode)
{
  int inexact;
  /* Flag exact computation */
  int not_exact;
  mpfr_t t, te, ti; /* auxiliary variables */
  mp_prec_t Nx, Ny, Nz; /* size variables */
  mp_prec_t Nt;   /* precision of the intermediary variable */
  mp_exp_t Ex, Ey, sh;
  mp_exp_unsigned_t diff_exp;

  /* particular cases */
  if (MPFR_ARE_SINGULAR(x,y))
    {
      if (MPFR_IS_NAN(x) || MPFR_IS_NAN(y))
	{
	  MPFR_SET_NAN(z);
	  MPFR_RET_NAN;
	}
      else if (MPFR_IS_INF(x) || MPFR_IS_INF(y))
	{
	  MPFR_SET_INF(z);
	  MPFR_SET_POS(z);
	  MPFR_RET(0);
	}
      else if (MPFR_IS_ZERO(x))
	return mpfr_abs (z, y, rnd_mode);
      else /* y is necessarily 0 */
	return mpfr_abs (z, x, rnd_mode);
    }
  MPFR_CLEAR_FLAGS(z);

  if (mpfr_cmpabs (x, y) < 0)
    {
      mpfr_srcptr t;
      t = x;
      x = y;
      y = t;
    }

  /* now |x| >= |y| */

  Ex = MPFR_GET_EXP (x);
  Ey = MPFR_GET_EXP (y);
  diff_exp = (mp_exp_unsigned_t) Ex - Ey;

  Nz = MPFR_PREC(z);   /* Precision of output variable */

  /* we have x < 2^Ex thus x^2 < 2^(2*Ex),
     and ulp(x) = 2^(Ex-Nx) thus ulp(x^2) >= 2^(2*Ex-2*Nx).
     y does not overlap with the result when
     x^2+y^2 < (|x| + 1/2*ulp(x,Nz))^2 = x^2 + |x|*ulp(x,Nz) + 1/4*ulp(x,Nz)^2,
     i.e. a sufficient condition is y^2 < |x|*ulp(x,Nz),
     or 2^(2*Ey) <= 2^(2*Ex-1-Nz), i.e. 2*diff_exp > Nz.
     Warning: this is true only for Nx <= Nz, otherwise the trailing bits
     of x may be already very close to 1/2*ulp(x,Nz)!
  */
  if (MPFR_PREC(x) <= Nz && diff_exp > Nz / 2) /* result is |x| or |x|+ulp(|x|,Nz) */
    {
      if (rnd_mode == GMP_RNDU)
        {
          /* if z > abs(x), then it was already rounded up */
          if (mpfr_abs (z, x, rnd_mode) <= 0)
            mpfr_add_one_ulp (z, rnd_mode);
          return 1;
        }
      else /* GMP_RNDZ, GMP_RNDD, GMP_RNDN */
        {
          inexact = mpfr_abs (z, x, rnd_mode);
          return (inexact) ? inexact : -1;
        }
    }

  /* General case */

  Nx = MPFR_PREC(x);   /* Precision of input variable */
  Ny = MPFR_PREC(y);   /* Precision of input variable */

  /* compute the working precision -- see algorithms.ps */
  Nt = MAX(MAX(MAX(Nx, Ny), Nz), 8);
  Nt = Nt - 8 + __gmpfr_ceil_log2 (Nt);

  /* initialise the intermediary variables */
  mpfr_init (t);
  mpfr_init (te);
  mpfr_init (ti);

  mpfr_save_emin_emax ();

  sh = MAX(0,MIN(Ex,Ey));

  do
    {
      Nt += 10;

      not_exact = 0;
      /* reactualization of the precision */
      mpfr_set_prec (t, Nt);
      mpfr_set_prec (te, Nt);
      mpfr_set_prec (ti, Nt);

      /* computations of hypot */
      mpfr_div_2ui (te, x, sh, GMP_RNDZ); /* exact since Nt >= Nx */
      if (mpfr_mul (te, te, te, GMP_RNDZ))   /* x^2 */
        not_exact = 1;

      mpfr_div_2ui (ti, y, sh, GMP_RNDZ); /* exact since Nt >= Ny */
      if (mpfr_mul (ti, ti, ti, GMP_RNDZ))   /* y^2 */
        not_exact = 1;

      if (mpfr_add (t, te, ti, GMP_RNDZ))  /* x^2+y^2 */
        not_exact = 1;

      if (mpfr_sqrt (t, t, GMP_RNDZ))     /* sqrt(x^2+y^2)*/
        not_exact = 1;

    }
  while (not_exact && !mpfr_can_round (t, Nt - 2, GMP_RNDN, GMP_RNDZ,
                                       Nz + (rnd_mode == GMP_RNDN)));

  inexact = mpfr_mul_2ui (z, t, sh, rnd_mode);
  /* if not_exact=1, necessarily the last (Nt-Nz) bits of t are not all zero,
     otherwise it would not have been possible to round correctly */
  MPFR_ASSERTD(not_exact == 0 || inexact != 0);

  mpfr_clear (t);
  mpfr_clear (ti);
  mpfr_clear (te);
  
  /*
    not_exact  inexact
        0         0         result is exact, ternary flag is 0
        0       non zero    t is exact, ternary flag given by inexact
        1         0         impossible (see above)
        1       non zero    ternary flag given by inexact
   */

  mpfr_restore_emin_emax ();

  return mpfr_check_range (z, inexact, rnd_mode);
}