1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
|
/* mpfr_jn_asympt, mpfr_yn_asympt -- shared code for mpfr_jn and mpfr_yn
Copyright 2007, 2008, 2009 Free Software Foundation, Inc.
Contributed by the Arenaire and Cacao projects, INRIA.
This file is part of the GNU MPFR Library.
The GNU MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or (at your
option) any later version.
The GNU MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the GNU MPFR Library; see the file COPYING.LIB. If not, write to
the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston,
MA 02110-1301, USA. */
#ifdef MPFR_JN
# define FUNCTION mpfr_jn_asympt
#else
# ifdef MPFR_YN
# define FUNCTION mpfr_yn_asympt
# else
# error "neither MPFR_JN nor MPFR_YN is defined"
# endif
#endif
/* Implements asymptotic expansion for jn or yn (formulae 9.2.5 and 9.2.6
from Abramowitz & Stegun).
Assumes |z| > p log(2)/2, where p is the target precision
(z can be negative only for jn).
Return 0 if the expansion does not converge enough (the value 0 as inexact
flag should not happen for normal input).
*/
static int
FUNCTION (mpfr_ptr res, long n, mpfr_srcptr z, mp_rnd_t r)
{
mpfr_t s, c, P, Q, t, iz, err_t, err_s, err_u;
mp_prec_t w;
long k;
int inex, stop, diverge = 0;
mp_exp_t err2, err;
MPFR_ZIV_DECL (loop);
mpfr_init (c);
w = MPFR_PREC(res) + MPFR_INT_CEIL_LOG2(MPFR_PREC(res)) + 4;
MPFR_ZIV_INIT (loop, w);
for (;;)
{
mpfr_set_prec (c, w);
mpfr_init2 (s, w);
mpfr_init2 (P, w);
mpfr_init2 (Q, w);
mpfr_init2 (t, w);
mpfr_init2 (iz, w);
mpfr_init2 (err_t, 31);
mpfr_init2 (err_s, 31);
mpfr_init2 (err_u, 31);
/* Approximate sin(z) and cos(z). In the following, err <= k means that
the approximate value y and the true value x are related by
y = x * (1 + u)^k with |u| <= 2^(-w), following Higham's method. */
mpfr_sin_cos (s, c, z, GMP_RNDN);
if (MPFR_IS_NEG(z))
mpfr_neg (s, s, GMP_RNDN); /* compute jn/yn(|z|), fix sign later */
/* The absolute error on s/c is bounded by 1/2 ulp(1/2) <= 2^(-w-1). */
mpfr_add (t, s, c, GMP_RNDN);
mpfr_sub (c, s, c, GMP_RNDN);
mpfr_swap (s, t);
/* now s approximates sin(z)+cos(z), and c approximates sin(z)-cos(z),
with total absolute error bounded by 2^(1-w). */
/* precompute 1/(8|z|) */
mpfr_si_div (iz, MPFR_IS_POS(z) ? 1 : -1, z, GMP_RNDN); /* err <= 1 */
mpfr_div_2ui (iz, iz, 3, GMP_RNDN);
/* compute P and Q */
mpfr_set_ui (P, 1, GMP_RNDN);
mpfr_set_ui (Q, 0, GMP_RNDN);
mpfr_set_ui (t, 1, GMP_RNDN); /* current term */
mpfr_set_ui (err_t, 0, GMP_RNDN); /* error on t */
mpfr_set_ui (err_s, 0, GMP_RNDN); /* error on P and Q (sum of errors) */
for (k = 1, stop = 0; stop < 4; k++)
{
/* compute next term: t(k)/t(k-1) = (2n+2k-1)(2n-2k+1)/(8kz) */
mpfr_mul_si (t, t, 2 * (n + k) - 1, GMP_RNDN); /* err <= err_k + 1 */
mpfr_mul_si (t, t, 2 * (n - k) + 1, GMP_RNDN); /* err <= err_k + 2 */
mpfr_div_ui (t, t, k, GMP_RNDN); /* err <= err_k + 3 */
mpfr_mul (t, t, iz, GMP_RNDN); /* err <= err_k + 5 */
/* the relative error on t is bounded by (1+u)^(5k)-1, which is
bounded by 6ku for 6ku <= 0.02: first |5 log(1+u)| <= |5.5u|
for |u| <= 0.15, then |exp(5.5u)-1| <= 6u for |u| <= 0.02. */
mpfr_mul_ui (err_t, t, 6 * k, MPFR_IS_POS(t) ? GMP_RNDU : GMP_RNDD);
mpfr_abs (err_t, err_t, GMP_RNDN); /* exact */
/* the absolute error on t is bounded by err_t * 2^(-w) */
mpfr_abs (err_u, t, GMP_RNDU);
mpfr_mul_2ui (err_u, err_u, w, GMP_RNDU); /* t * 2^w */
mpfr_add (err_u, err_u, err_t, GMP_RNDU); /* max|t| * 2^w */
if (stop >= 2)
{
/* take into account the neglected terms: t * 2^w */
mpfr_div_2ui (err_s, err_s, w, GMP_RNDU);
if (MPFR_IS_POS(t))
mpfr_add (err_s, err_s, t, GMP_RNDU);
else
mpfr_sub (err_s, err_s, t, GMP_RNDU);
mpfr_mul_2ui (err_s, err_s, w, GMP_RNDU);
stop ++;
}
/* if k is odd, add to Q, otherwise to P */
else if (k & 1)
{
/* if k = 1 mod 4, add, otherwise subtract */
if ((k & 2) == 0)
mpfr_add (Q, Q, t, GMP_RNDN);
else
mpfr_sub (Q, Q, t, GMP_RNDN);
/* check if the next term is smaller than ulp(Q): if EXP(err_u)
<= EXP(Q), since the current term is bounded by
err_u * 2^(-w), it is bounded by ulp(Q) */
if (MPFR_EXP(err_u) <= MPFR_EXP(Q))
stop ++;
else
stop = 0;
}
else
{
/* if k = 0 mod 4, add, otherwise subtract */
if ((k & 2) == 0)
mpfr_add (P, P, t, GMP_RNDN);
else
mpfr_sub (P, P, t, GMP_RNDN);
/* check if the next term is smaller than ulp(P) */
if (MPFR_EXP(err_u) <= MPFR_EXP(P))
stop ++;
else
stop = 0;
}
mpfr_add (err_s, err_s, err_t, GMP_RNDU);
/* the sum of the rounding errors on P and Q is bounded by
err_s * 2^(-w) */
/* stop when start to diverge */
if (stop < 2 &&
((MPFR_IS_POS(z) && mpfr_cmp_ui (z, (k + 1) / 2) < 0) ||
(MPFR_IS_NEG(z) && mpfr_cmp_si (z, - ((k + 1) / 2)) > 0)))
{
/* if we have to stop the series because it diverges, then
increasing the precision will most probably fail, since
we will stop to the same point, and thus compute a very
similar approximation */
diverge = 1;
stop = 2; /* force stop */
}
}
/* the sum of the total errors on P and Q is bounded by err_s * 2^(-w) */
/* Now combine: the sum of the rounding errors on P and Q is bounded by
err_s * 2^(-w), and the absolute error on s/c is bounded by 2^(1-w) */
if ((n & 1) == 0) /* n even: P * (sin + cos) + Q (cos - sin) for jn
Q * (sin + cos) + P (sin - cos) for yn */
{
#ifdef MPFR_JN
mpfr_mul (c, c, Q, GMP_RNDN); /* Q * (sin - cos) */
mpfr_mul (s, s, P, GMP_RNDN); /* P * (sin + cos) */
#else
mpfr_mul (c, c, P, GMP_RNDN); /* P * (sin - cos) */
mpfr_mul (s, s, Q, GMP_RNDN); /* Q * (sin + cos) */
#endif
err = MPFR_EXP(c);
if (MPFR_EXP(s) > err)
err = MPFR_EXP(s);
#ifdef MPFR_JN
mpfr_sub (s, s, c, GMP_RNDN);
#else
mpfr_add (s, s, c, GMP_RNDN);
#endif
}
else /* n odd: P * (sin - cos) + Q (cos + sin) for jn,
Q * (sin - cos) - P (cos + sin) for yn */
{
#ifdef MPFR_JN
mpfr_mul (c, c, P, GMP_RNDN); /* P * (sin - cos) */
mpfr_mul (s, s, Q, GMP_RNDN); /* Q * (sin + cos) */
#else
mpfr_mul (c, c, Q, GMP_RNDN); /* Q * (sin - cos) */
mpfr_mul (s, s, P, GMP_RNDN); /* P * (sin + cos) */
#endif
err = MPFR_EXP(c);
if (MPFR_EXP(s) > err)
err = MPFR_EXP(s);
#ifdef MPFR_JN
mpfr_add (s, s, c, GMP_RNDN);
#else
mpfr_sub (s, c, s, GMP_RNDN);
#endif
}
if ((n & 2) != 0)
mpfr_neg (s, s, GMP_RNDN);
if (MPFR_EXP(s) > err)
err = MPFR_EXP(s);
/* the absolute error on s is bounded by P*err(s/c) + Q*err(s/c)
+ err(P)*(s/c) + err(Q)*(s/c) + 3 * 2^(err - w - 1)
<= (|P|+|Q|) * 2^(1-w) + err_s * 2^(1-w) + 2^err * 2^(1-w),
since |c|, |old_s| <= 2. */
err2 = (MPFR_EXP(P) >= MPFR_EXP(Q)) ? MPFR_EXP(P) + 2 : MPFR_EXP(Q) + 2;
/* (|P| + |Q|) * 2^(1 - w) <= 2^(err2 - w) */
err = MPFR_EXP(err_s) >= err ? MPFR_EXP(err_s) + 2 : err + 2;
/* err_s * 2^(1-w) + 2^old_err * 2^(1-w) <= 2^err * 2^(-w) */
err2 = (err >= err2) ? err + 1 : err2 + 1;
/* now the absolute error on s is bounded by 2^(err2 - w) */
/* multiply by sqrt(1/(Pi*z)) */
mpfr_const_pi (c, GMP_RNDN); /* Pi, err <= 1 */
mpfr_mul (c, c, z, GMP_RNDN); /* err <= 2 */
mpfr_si_div (c, MPFR_IS_POS(z) ? 1 : -1, c, GMP_RNDN); /* err <= 3 */
mpfr_sqrt (c, c, GMP_RNDN); /* err<=5/2, thus the absolute error is
bounded by 3*u*|c| for |u| <= 0.25 */
mpfr_mul (err_t, c, s, MPFR_SIGN(c)==MPFR_SIGN(s) ? GMP_RNDU : GMP_RNDD);
mpfr_abs (err_t, err_t, GMP_RNDU);
mpfr_mul_ui (err_t, err_t, 3, GMP_RNDU);
/* 3*2^(-w)*|old_c|*|s| [see below] is bounded by err_t * 2^(-w) */
err2 += MPFR_EXP(c);
/* |old_c| * 2^(err2 - w) [see below] is bounded by 2^(err2-w) */
mpfr_mul (c, c, s, GMP_RNDN); /* the absolute error on c is bounded by
1/2 ulp(c) + 3*2^(-w)*|old_c|*|s|
+ |old_c| * 2^(err2 - w) */
/* compute err_t * 2^(-w) + 1/2 ulp(c) = (err_t + 2^EXP(c)) * 2^(-w) */
err = (MPFR_EXP(err_t) > MPFR_EXP(c)) ? MPFR_EXP(err_t) + 1 : MPFR_EXP(c) + 1;
/* err_t * 2^(-w) + 1/2 ulp(c) <= 2^(err - w) */
/* now err_t * 2^(-w) bounds 1/2 ulp(c) + 3*2^(-w)*|old_c|*|s| */
err = (err >= err2) ? err + 1 : err2 + 1;
/* the absolute error on c is bounded by 2^(err - w) */
mpfr_clear (s);
mpfr_clear (P);
mpfr_clear (Q);
mpfr_clear (t);
mpfr_clear (iz);
mpfr_clear (err_t);
mpfr_clear (err_s);
mpfr_clear (err_u);
err -= MPFR_EXP(c);
if (MPFR_LIKELY (MPFR_CAN_ROUND (c, w - err, MPFR_PREC(res), r)))
break;
if (diverge != 0)
{
mpfr_set (c, z, r); /* will force inex=0 below, which means the
asymptotic expansion failed */
break;
}
MPFR_ZIV_NEXT (loop, w);
}
MPFR_ZIV_FREE (loop);
inex = (MPFR_IS_POS(z) || ((n & 1) == 0)) ? mpfr_set (res, c, r)
: mpfr_neg (res, c, r);
mpfr_clear (c);
return inex;
}
|