1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
|
/* mpfr_lngamma -- lngamma function
Copyright 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
Contributed by the Arenaire and Cacao projects, INRIA.
This file is part of the MPFR Library.
The MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or (at your
option) any later version.
The MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the MPFR Library; see the file COPYING.LIB. If not, write to
the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston,
MA 02110-1301, USA. */
#define MPFR_NEED_LONGLONG_H
#include "mpfr-impl.h"
/* assuming b[0]...b[2(n-1)] are computed, computes and stores B[2n]*(2n+1)!
t/(exp(t)-1) = sum(B[j]*t^j/j!, j=0..infinity)
thus t = (exp(t)-1) * sum(B[j]*t^j/j!, n=0..infinity).
Taking the coefficient of degree n+1 > 1, we get:
0 = sum(1/(n+1-k)!*B[k]/k!, k=0..n)
which gives:
B[n] = -sum(binomial(n+1,k)*B[k], k=0..n-1)/(n+1).
Let C[n] = B[n]*(n+1)!.
Then C[n] = -sum(binomial(n+1,k)*C[k]*n!/(k+1)!, k=0..n-1),
which proves that the C[n] are integers.
*/
static mpz_t*
bernoulli (mpz_t *b, unsigned long n)
{
if (n == 0)
{
b = (mpz_t *) (*__gmp_allocate_func) (sizeof (mpz_t));
mpz_init_set_ui (b[0], 1);
}
else
{
mpz_t t;
unsigned long k;
b = (mpz_t *) (*__gmp_reallocate_func)
(b, n * sizeof (mpz_t), (n + 1) * sizeof (mpz_t));
mpz_init (b[n]);
/* b[n] = -sum(binomial(2n+1,2k)*C[k]*(2n)!/(2k+1)!, k=0..n-1) */
mpz_init_set_ui (t, 2 * n + 1);
mpz_mul_ui (t, t, 2 * n - 1);
mpz_mul_ui (t, t, 2 * n);
mpz_mul_ui (t, t, n);
mpz_div_ui (t, t, 3); /* exact: t=binomial(2*n+1,2*k)*(2*n)!/(2*k+1)!
for k=n-1 */
mpz_mul (b[n], t, b[n-1]);
for (k = n - 1; k-- > 0;)
{
mpz_mul_ui (t, t, 2 * k + 1);
mpz_mul_ui (t, t, 2 * k + 2);
mpz_mul_ui (t, t, 2 * k + 2);
mpz_mul_ui (t, t, 2 * k + 3);
mpz_div_ui (t, t, 2 * (n - k) + 1);
mpz_div_ui (t, t, 2 * (n - k));
mpz_addmul (b[n], t, b[k]);
}
/* take into account C[1] */
mpz_mul_ui (t, t, 2 * n + 1);
mpz_div_2exp (t, t, 1);
mpz_sub (b[n], b[n], t);
mpz_neg (b[n], b[n]);
mpz_clear (t);
}
return b;
}
/* given a precision p, return alpha, such that the argument reduction
will use k = alpha*p*log(2).
Warning: we should always have alpha >= log(2)/(2Pi) ~ 0.11,
and the smallest value of alpha multiplied by the smallest working
precision should be >= 4.
*/
static double
mpfr_gamma_alpha (mp_prec_t p)
{
if (p <= 100)
return 0.6;
else if (p <= 200)
return 0.8;
else if (p <= 500)
return 0.8;
else if (p <= 1000)
return 1.3;
else if (p <= 2000)
return 1.7;
else if (p <= 5000)
return 2.2;
else if (p <= 10000)
return 3.4;
else /* heuristic fit from above */
return 0.26 * (double) MPFR_INT_CEIL_LOG2 ((unsigned long) p);
}
#ifndef IS_GAMMA
static int
unit_bit (mpfr_srcptr (x))
{
mp_exp_t expo;
mp_prec_t prec;
mp_limb_t x0;
expo = MPFR_GET_EXP (x);
if (expo <= 0)
return 0; /* |x| < 1 */
prec = MPFR_PREC (x);
if (expo > prec)
return 0; /* y is a multiple of 2^(expo-prec), thus an even integer */
/* Now, the unit bit is represented. */
prec = ((prec - 1) / BITS_PER_MP_LIMB + 1) * BITS_PER_MP_LIMB - expo;
/* number of represented fractional bits (including the trailing 0's) */
x0 = *(MPFR_MANT (x) + prec / BITS_PER_MP_LIMB);
/* limb containing the unit bit */
return (x0 >> (prec % BITS_PER_MP_LIMB)) & 1;
}
#endif
/* lngamma(x) = log(gamma(x)).
We use formula [6.1.40] from Abramowitz&Stegun:
lngamma(z) = (z-1/2)*log(z) - z + 1/2*log(2*Pi)
+ sum (Bernoulli[2n]/(2m)/(2m-1)/z^(2m-1),m=1..infinity)
According to [6.1.42], if the sum is truncated after m=n, the error
R_n(z) is bounded by |B[2n+2]|*K(z)/(2n+1)/(2n+2)/|z|^(2n+1)
where K(z) = max (z^2/(u^2+z^2)) for u >= 0.
For z real, |K(z)| <= 1 thus R_n(z) is bounded by the first neglected term.
*/
#ifdef IS_GAMMA
#define GAMMA_FUNC mpfr_gamma_aux
#else
#define GAMMA_FUNC mpfr_lngamma_aux
#endif
static int
GAMMA_FUNC (mpfr_ptr y, mpfr_srcptr z0, mp_rnd_t rnd)
{
mp_prec_t precy, w; /* working precision */
mpfr_t s, t, u, v, z;
unsigned long m, k, maxm;
mpz_t *B;
int inexact, compared;
mp_exp_t err_s, err_t;
unsigned long Bm = 0; /* number of allocated B[] */
unsigned long oldBm;
double d;
MPFR_SAVE_EXPO_DECL (expo);
compared = mpfr_cmp_ui (z0, 1);
MPFR_SAVE_EXPO_MARK (expo);
#ifndef IS_GAMMA /* lngamma or lgamma */
if (compared == 0 || (compared > 0 && mpfr_cmp_ui (z0, 2) == 0))
{
MPFR_SAVE_EXPO_FREE (expo);
return mpfr_set_ui (y, 0, GMP_RNDN); /* lngamma(1 or 2) = +0 */
}
/* Deal here with tiny inputs. We have for -0.3 <= x <= 0.3:
- log|x| - gamma*x <= log|gamma(x)| <= - log|x| - gamma*x + x^2 */
if (MPFR_EXP(z0) <= - (mp_exp_t) MPFR_PREC(y))
{
mpfr_t l, h, g;
int ok, inex2;
mp_prec_t prec = MPFR_PREC(y) + 14;
MPFR_ZIV_DECL (loop);
MPFR_ZIV_INIT (loop, prec);
do
{
mpfr_init2 (l, prec);
if (MPFR_IS_POS(z0))
{
mpfr_log (l, z0, GMP_RNDU); /* upper bound for log(z0) */
mpfr_init2 (h, MPFR_PREC(l));
}
else
{
mpfr_init2 (h, MPFR_PREC(z0));
mpfr_neg (h, z0, GMP_RNDN); /* exact */
mpfr_log (l, h, GMP_RNDU); /* upper bound for log(-z0) */
mpfr_set_prec (h, MPFR_PREC(l));
}
mpfr_neg (l, l, GMP_RNDD); /* lower bound for -log(|z0|) */
mpfr_set (h, l, GMP_RNDD); /* exact */
mpfr_nextabove (h); /* upper bound for -log(|z0|), avoids two calls
to mpfr_log */
mpfr_init2 (g, MPFR_PREC(l));
/* if z0>0, we need an upper approximation of Euler's constant
for the left bound */
mpfr_const_euler (g, MPFR_IS_POS(z0) ? GMP_RNDU : GMP_RNDD);
mpfr_mul (g, g, z0, GMP_RNDD);
mpfr_sub (l, l, g, GMP_RNDD);
mpfr_const_euler (g, MPFR_IS_POS(z0) ? GMP_RNDD : GMP_RNDU); /* cached */
mpfr_mul (g, g, z0, GMP_RNDU);
mpfr_sub (h, h, g, GMP_RNDD);
mpfr_mul (g, z0, z0, GMP_RNDU);
mpfr_add (h, h, g, GMP_RNDU);
inexact = mpfr_prec_round (l, MPFR_PREC(y), rnd);
inex2 = mpfr_prec_round (h, MPFR_PREC(y), rnd);
/* Caution: we not only need l = h, but both inexact flags should
agree. Indeed, one of the inexact flags might be zero. In that
case if we assume lngamma(z0) cannot be exact, the other flag
should be correct. We are conservative here and request that both
inexact flags agree. */
ok = SAME_SIGN (inexact, inex2) && mpfr_cmp (l, h) == 0;
if (ok)
mpfr_set (y, h, rnd); /* exact */
mpfr_clear (l);
mpfr_clear (h);
mpfr_clear (g);
if (ok)
{
MPFR_SAVE_EXPO_FREE (expo);
return mpfr_check_range (y, inexact, rnd);
}
/* since we have log|gamma(x)| = - log|x| - gamma*x + O(x^2),
if x ~ 2^(-n), then we have a n-bit approximation, thus
we can try again with a working precision of n bits,
especially when n >> PREC(y).
Otherwise we would use the reflection formula evaluating x-1,
which would need precision n. */
MPFR_ZIV_NEXT (loop, prec);
}
while (prec <= -MPFR_EXP(z0));
MPFR_ZIV_FREE (loop);
}
#endif
precy = MPFR_PREC(y);
mpfr_init2 (s, MPFR_PREC_MIN);
mpfr_init2 (t, MPFR_PREC_MIN);
mpfr_init2 (u, MPFR_PREC_MIN);
mpfr_init2 (v, MPFR_PREC_MIN);
mpfr_init2 (z, MPFR_PREC_MIN);
if (compared < 0)
{
mp_exp_t err_u;
/* use reflection formula:
gamma(x) = Pi*(x-1)/sin(Pi*(2-x))/gamma(2-x)
thus lngamma(x) = log(Pi*(x-1)/sin(Pi*(2-x))) - lngamma(2-x) */
w = precy + MPFR_INT_CEIL_LOG2 (precy);
while (1)
{
w += MPFR_INT_CEIL_LOG2 (w) + 14;
MPFR_ASSERTD(w >= 3);
mpfr_set_prec (s, w);
mpfr_set_prec (t, w);
mpfr_set_prec (u, w);
mpfr_set_prec (v, w);
/* In the following, we write r for a real of absolute value
at most 2^(-w). Different instances of r may represent different
values. */
mpfr_ui_sub (s, 2, z0, GMP_RNDD); /* s = (2-z0) * (1+2r) >= 1 */
mpfr_const_pi (t, GMP_RNDN); /* t = Pi * (1+r) */
mpfr_lngamma (u, s, GMP_RNDN); /* lngamma(2-x) */
/* Let s = (2-z0) + h. By construction, -(2-z0)*2^(1-w) <= h <= 0.
We have lngamma(s) = lngamma(2-z0) + h*Psi(z), z in [2-z0+h,2-z0].
Since 2-z0+h = s >= 1 and |Psi(x)| <= max(1,log(x)) for x >= 1,
the error on u is bounded by
ulp(u)/2 + (2-z0)*max(1,log(2-z0))*2^(1-w)
= (1/2 + (2-z0)*max(1,log(2-z0))*2^(1-E(u))) ulp(u) */
d = (double) MPFR_GET_EXP(s) * 0.694; /* upper bound for log(2-z0) */
err_u = MPFR_GET_EXP(s) + __gmpfr_ceil_log2 (d) + 1 - MPFR_GET_EXP(u);
err_u = (err_u >= 0) ? err_u + 1 : 0;
/* now the error on u is bounded by 2^err_u ulps */
mpfr_mul (s, s, t, GMP_RNDN); /* Pi*(2-x) * (1+r)^4 */
err_s = MPFR_GET_EXP(s); /* 2-x <= 2^err_s */
mpfr_sin (s, s, GMP_RNDN); /* sin(Pi*(2-x)) */
/* the error on s is bounded by 1/2*ulp(s) + [(1+2^(-w))^4-1]*(2-x)
<= 1/2*ulp(s) + 5*2^(-w)*(2-x) for w >= 3
<= (1/2 + 5 * 2^(-E(s)) * (2-x)) ulp(s) */
err_s += 3 - MPFR_GET_EXP(s);
err_s = (err_s >= 0) ? err_s + 1 : 0;
/* the error on s is bounded by 2^err_s ulp(s), thus by
2^(err_s+1)*2^(-w)*|s| since ulp(s) <= 2^(1-w)*|s|.
Now n*2^(-w) can always be written |(1+r)^n-1| for some
|r|<=2^(-w), thus taking n=2^(err_s+1) we see that
|S - s| <= |(1+r)^(2^(err_s+1))-1| * |s|, where S is the
true value.
In fact if ulp(s) <= ulp(S) the same inequality holds for
|S| instead of |s| in the right hand side, i.e., we can
write s = (1+r)^(2^(err_s+1)) * S.
But if ulp(S) < ulp(s), we need to add one ``bit'' to the error,
to get s = (1+r)^(2^(err_s+2)) * S. This is true since with
E = n*2^(-w) we have |s - S| <= E * |s|, thus
|s - S| <= E/(1-E) * |S|.
Now E/(1-E) is bounded by 2E as long as E<=1/2,
and 2E can be written (1+r)^(2n)-1 as above.
*/
err_s += 2; /* exponent of relative error */
mpfr_sub_ui (v, z0, 1, GMP_RNDN); /* v = (x-1) * (1+r) */
mpfr_mul (v, v, t, GMP_RNDN); /* v = Pi*(x-1) * (1+r)^3 */
mpfr_div (v, v, s, GMP_RNDN); /* Pi*(x-1)/sin(Pi*(2-x)) */
mpfr_abs (v, v, GMP_RNDN);
/* (1+r)^(3+2^err_s+1) */
err_s = (err_s <= 1) ? 3 : err_s + 1;
/* now (1+r)^M with M <= 2^err_s */
mpfr_log (v, v, GMP_RNDN);
/* log(v*(1+e)) = log(v)+log(1+e) where |e| <= 2^(err_s-w).
Since |log(1+e)| <= 2*e for |e| <= 1/4, the error on v is
bounded by ulp(v)/2 + 2^(err_s+1-w). */
if (err_s + 2 > w)
{
w += err_s + 2;
}
else
{
err_s += 1 - MPFR_GET_EXP(v);
err_s = (err_s >= 0) ? err_s + 1 : 0;
/* the error on v is bounded by 2^err_s ulps */
err_u += MPFR_GET_EXP(u); /* absolute error on u */
err_s += MPFR_GET_EXP(v); /* absolute error on v */
mpfr_sub (s, v, u, GMP_RNDN);
/* the total error on s is bounded by ulp(s)/2 + 2^(err_u-w)
+ 2^(err_s-w) <= ulp(s)/2 + 2^(max(err_u,err_s)+1-w) */
err_s = (err_s >= err_u) ? err_s : err_u;
err_s += 1 - MPFR_GET_EXP(s); /* error is 2^err_s ulp(s) */
err_s = (err_s >= 0) ? err_s + 1 : 0;
if (mpfr_can_round (s, w - err_s, GMP_RNDN, GMP_RNDZ, precy
+ (rnd == GMP_RNDN)))
goto end;
}
}
}
/* now z0 > 1 */
MPFR_ASSERTD (compared > 0);
/* since k is O(w), the value of log(z0*...*(z0+k-1)) is about w*log(w),
so there is a cancellation of ~log(w) in the argument reconstruction */
w = precy + MPFR_INT_CEIL_LOG2 (precy);
do
{
w += MPFR_INT_CEIL_LOG2 (w) + 13;
MPFR_ASSERTD (w >= 3);
mpfr_set_prec (s, 53);
/* we need z >= w*log(2)/(2*Pi) to get an absolute error less than 2^(-w)
but the optimal value is about 0.155665*w */
/* FIXME: replace double by mpfr_t types. */
mpfr_set_d (s, mpfr_gamma_alpha (precy) * (double) w, GMP_RNDU);
if (mpfr_cmp (z0, s) < 0)
{
mpfr_sub (s, s, z0, GMP_RNDU);
k = mpfr_get_ui (s, GMP_RNDU);
if (k < 3)
k = 3;
}
else
k = 3;
mpfr_set_prec (s, w);
mpfr_set_prec (t, w);
mpfr_set_prec (u, w);
mpfr_set_prec (v, w);
mpfr_set_prec (z, w);
mpfr_add_ui (z, z0, k, GMP_RNDN);
/* z = (z0+k)*(1+t1) with |t1| <= 2^(-w) */
/* z >= 4 ensures the relative error on log(z) is small,
and also (z-1/2)*log(z)-z >= 0 */
MPFR_ASSERTD (mpfr_cmp_ui (z, 4) >= 0);
mpfr_log (s, z, GMP_RNDN); /* log(z) */
/* we have s = log((z0+k)*(1+t1))*(1+t2) with |t1|, |t2| <= 2^(-w).
Since w >= 2 and z0+k >= 4, we can write log((z0+k)*(1+t1))
= log(z0+k) * (1+t3) with |t3| <= 2^(-w), thus we have
s = log(z0+k) * (1+t4)^2 with |t4| <= 2^(-w) */
mpfr_mul_2ui (t, z, 1, GMP_RNDN); /* t = 2z * (1+t5) */
mpfr_sub_ui (t, t, 1, GMP_RNDN); /* t = 2z-1 * (1+t6)^3 */
/* since we can write 2z*(1+t5) = (2z-1)*(1+t5') with
t5' = 2z/(2z-1) * t5, thus |t5'| <= 8/7 * t5 */
mpfr_mul (s, s, t, GMP_RNDN); /* (2z-1)*log(z) * (1+t7)^6 */
mpfr_div_2ui (s, s, 1, GMP_RNDN); /* (z-1/2)*log(z) * (1+t7)^6 */
mpfr_sub (s, s, z, GMP_RNDN); /* (z-1/2)*log(z)-z */
/* s = [(z-1/2)*log(z)-z]*(1+u)^14, s >= 1/2 */
mpfr_ui_div (u, 1, z, GMP_RNDN); /* 1/z * (1+u), u <= 1/4 since z >= 4 */
/* the first term is B[2]/2/z = 1/12/z: t=1/12/z, C[2]=1 */
mpfr_div_ui (t, u, 12, GMP_RNDN); /* 1/(12z) * (1+u)^2, t <= 3/128 */
mpfr_set (v, t, GMP_RNDN); /* (1+u)^2, v < 2^(-5) */
mpfr_add (s, s, v, GMP_RNDN); /* (1+u)^15 */
mpfr_mul (u, u, u, GMP_RNDN); /* 1/z^2 * (1+u)^3 */
if (Bm == 0)
{
B = bernoulli ((mpz_t *) 0, 0);
B = bernoulli (B, 1);
Bm = 2;
}
/* m <= maxm ensures that 2*m*(2*m+1) <= ULONG_MAX */
maxm = 1UL << (BITS_PER_MP_LIMB / 2 - 1);
/* s:(1+u)^15, t:(1+u)^2, t <= 3/128 */
for (m = 2; MPFR_GET_EXP(v) + (mp_exp_t) w >= MPFR_GET_EXP(s); m++)
{
mpfr_mul (t, t, u, GMP_RNDN); /* (1+u)^(10m-14) */
if (m <= maxm)
{
mpfr_mul_ui (t, t, 2*(m-1)*(2*m-3), GMP_RNDN);
mpfr_div_ui (t, t, 2*m*(2*m-1), GMP_RNDN);
mpfr_div_ui (t, t, 2*m*(2*m+1), GMP_RNDN);
}
else
{
mpfr_mul_ui (t, t, 2*(m-1), GMP_RNDN);
mpfr_mul_ui (t, t, 2*m-3, GMP_RNDN);
mpfr_div_ui (t, t, 2*m, GMP_RNDN);
mpfr_div_ui (t, t, 2*m-1, GMP_RNDN);
mpfr_div_ui (t, t, 2*m, GMP_RNDN);
mpfr_div_ui (t, t, 2*m+1, GMP_RNDN);
}
/* (1+u)^(10m-8) */
/* invariant: t=1/(2m)/(2m-1)/z^(2m-1)/(2m+1)! */
if (Bm <= m)
{
B = bernoulli (B, m); /* B[2m]*(2m+1)!, exact */
Bm ++;
}
mpfr_mul_z (v, t, B[m], GMP_RNDN); /* (1+u)^(10m-7) */
MPFR_ASSERTD(MPFR_GET_EXP(v) <= - (2 * m + 3));
mpfr_add (s, s, v, GMP_RNDN);
}
/* m <= 1/2*Pi*e*z ensures that |v[m]| < 1/2^(2m+3) */
MPFR_ASSERTD ((double) m <= 4.26 * mpfr_get_d (z, GMP_RNDZ));
/* We have sum([(1+u)^(10m-7)-1]*1/2^(2m+3), m=2..infinity)
<= 1.46*u for u <= 2^(-3).
We have 0 < lngamma(z) - [(z - 1/2) ln(z) - z + 1/2 ln(2 Pi)] < 0.021
for z >= 4, thus since the initial s >= 0.85, the different values of
s differ by at most one binade, and the total rounding error on s
in the for-loop is bounded by 2*(m-1)*ulp(final_s).
The error coming from the v's is bounded by
1.46*2^(-w) <= 2*ulp(final_s).
Thus the total error so far is bounded by [(1+u)^15-1]*s+2m*ulp(s)
<= (2m+47)*ulp(s).
Taking into account the truncation error (which is bounded by the last
term v[] according to 6.1.42 in A&S), the bound is (2m+48)*ulp(s).
*/
/* add 1/2*log(2*Pi) and subtract log(z0*(z0+1)*...*(z0+k-1)) */
mpfr_const_pi (v, GMP_RNDN); /* v = Pi*(1+u) */
mpfr_mul_2ui (v, v, 1, GMP_RNDN); /* v = 2*Pi * (1+u) */
if (k)
{
unsigned long l;
mpfr_set (t, z0, GMP_RNDN); /* t = z0*(1+u) */
for (l = 1; l < k; l++)
{
mpfr_add_ui (u, z0, l, GMP_RNDN); /* u = (z0+l)*(1+u) */
mpfr_mul (t, t, u, GMP_RNDN); /* (1+u)^(2l+1) */
}
/* now t: (1+u)^(2k-1) */
/* instead of computing log(sqrt(2*Pi)/t), we compute
1/2*log(2*Pi/t^2), which trades a square root for a square */
mpfr_mul (t, t, t, GMP_RNDN); /* (z0*...*(z0+k-1))^2, (1+u)^(4k-1) */
mpfr_div (v, v, t, GMP_RNDN);
/* 2*Pi/(z0*...*(z0+k-1))^2 (1+u)^(4k+1) */
}
#ifdef IS_GAMMA
err_s = MPFR_GET_EXP(s);
mpfr_exp (s, s, GMP_RNDN);
/* before the exponential, we have s = s0 + h where
|h| <= (2m+48)*ulp(s), thus exp(s0) = exp(s) * exp(-h).
For |h| <= 1/4, we have |exp(h)-1| <= 1.2*|h| thus
|exp(s) - exp(s0)| <= 1.2 * exp(s) * (2m+48)* 2^(EXP(s)-w). */
d = 1.2 * (2.0 * (double) m + 48.0);
/* the error on s is bounded by d*2^err_s * 2^(-w) */
mpfr_sqrt (t, v, GMP_RNDN);
/* let v0 be the exact value of v. We have v = v0*(1+u)^(4k+1),
thus t = sqrt(v0)*(1+u)^(2k+3/2). */
mpfr_mul (s, s, t, GMP_RNDN);
/* the error on input s is bounded by (1+u)^(d*2^err_s),
and that on t is (1+u)^(2k+3/2), thus the
total error is (1+u)^(d*2^err_s+2k+5/2) */
err_s += __gmpfr_ceil_log2 (d);
err_t = __gmpfr_ceil_log2 (2.0 * (double) k + 2.5);
err_s = (err_s >= err_t) ? err_s + 1 : err_t + 1;
#else
mpfr_log (t, v, GMP_RNDN);
/* let v0 be the exact value of v. We have v = v0*(1+u)^(4k+1),
thus log(v) = log(v0) + (4k+1)*log(1+u). Since |log(1+u)/u| <= 1.07
for |u| <= 2^(-3), the absolute error on log(v) is bounded by
1.07*(4k+1)*u, and the rounding error by ulp(t). */
mpfr_div_2ui (t, t, 1, GMP_RNDN);
/* the error on t is now bounded by ulp(t) + 0.54*(4k+1)*2^(-w).
We have sqrt(2*Pi)/(z0*(z0+1)*...*(z0+k-1)) <= sqrt(2*Pi)/k! <= 0.5
since k>=3, thus t <= -0.5 and ulp(t) >= 2^(-w).
Thus the error on t is bounded by (2.16*k+1.54)*ulp(t). */
err_t = MPFR_GET_EXP(t) + (mp_exp_t)
__gmpfr_ceil_log2 (2.2 * (double) k + 1.6);
err_s = MPFR_GET_EXP(s) + (mp_exp_t)
__gmpfr_ceil_log2 (2.0 * (double) m + 48.0);
mpfr_add (s, s, t, GMP_RNDN); /* this is a subtraction in fact */
/* the final error in ulp(s) is
<= 1 + 2^(err_t-EXP(s)) + 2^(err_s-EXP(s))
<= 2^(1+max(err_t,err_s)-EXP(s)) if err_t <> err_s
<= 2^(2+max(err_t,err_s)-EXP(s)) if err_t = err_s */
err_s = (err_t == err_s) ? 1 + err_s : ((err_t > err_s) ? err_t : err_s);
err_s += 1 - MPFR_GET_EXP(s);
#endif
}
while (MPFR_UNLIKELY (!MPFR_CAN_ROUND (s, w - err_s, precy, rnd)));
oldBm = Bm;
while (Bm--)
mpz_clear (B[Bm]);
(*__gmp_free_func) (B, oldBm * sizeof (mpz_t));
end:
inexact = mpfr_set (y, s, rnd);
mpfr_clear (s);
mpfr_clear (t);
mpfr_clear (u);
mpfr_clear (v);
mpfr_clear (z);
MPFR_SAVE_EXPO_FREE (expo);
return mpfr_check_range (y, inexact, rnd);
}
#ifndef IS_GAMMA
int
mpfr_lngamma (mpfr_ptr y, mpfr_srcptr x, mp_rnd_t rnd)
{
int inex;
MPFR_LOG_FUNC (("x[%#R]=%R rnd=%d", x, x, rnd),
("lngamma[%#R]=%R inexact=%d", y, y, inex));
/* special cases */
if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
{
if (MPFR_IS_NAN (x) || MPFR_IS_NEG (x))
{
MPFR_SET_NAN (y);
MPFR_RET_NAN;
}
else /* lngamma(+Inf) = lngamma(+0) = +Inf */
{
MPFR_SET_INF (y);
MPFR_SET_POS (y);
MPFR_RET (0); /* exact */
}
}
/* if x < 0 and -2k-1 <= x <= -2k, then lngamma(x) = NaN */
if (MPFR_IS_NEG (x) && (unit_bit (x) == 0 || mpfr_integer_p (x)))
{
MPFR_SET_NAN (y);
MPFR_RET_NAN;
}
inex = mpfr_lngamma_aux (y, x, rnd);
return inex;
}
int
mpfr_lgamma (mpfr_ptr y, int *signp, mpfr_srcptr x, mp_rnd_t rnd)
{
int inex;
MPFR_LOG_FUNC (("x[%#R]=%R rnd=%d", x, x, rnd),
("lgamma[%#R]=%R inexact=%d", y, y, inex));
*signp = 1; /* most common case */
if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
{
if (MPFR_IS_NAN (x))
{
MPFR_SET_NAN (y);
MPFR_RET_NAN;
}
else
{
*signp = MPFR_INT_SIGN (x);
MPFR_SET_INF (y);
MPFR_SET_POS (y);
MPFR_RET (0);
}
}
if (MPFR_IS_NEG (x))
{
if (mpfr_integer_p (x))
{
MPFR_SET_INF (y);
MPFR_SET_POS (y);
MPFR_RET (0);
}
if (unit_bit (x) == 0)
*signp = -1;
/* For tiny negative x, we have gamma(x) = 1/x - euler + O(x),
thus |gamma(x)| = -1/x + euler + O(x), and
log |gamma(x)| = -log(-x) - euler*x + O(x^2).
More precisely we have for -0.4 <= x < 0:
-log(-x) <= log |gamma(x)| <= -log(-x) - x.
Since log(x) is not representable, we may have an instance of the
Table Maker Dilemma. The only way to ensure correct rounding is to
compute an interval [l,h] such that l <= -log(-x) and
-log(-x) - x <= h, and check whether l and h round to the same number
for the target precision and rounding modes. */
if (MPFR_EXP(x) + 1 <= - (mp_exp_t) MPFR_PREC(y))
/* since PREC(y) >= 1, this ensures EXP(x) <= -2,
thus |x| <= 0.25 < 0.4 */
{
mpfr_t l, h;
int ok, inex2;
mp_prec_t w = MPFR_PREC (y) + 14;
while (1)
{
mpfr_init2 (l, w);
mpfr_init2 (h, w);
/* we want a lower bound on -log(-x), thus an upper bound
on log(-x), thus an upper bound on -x. */
mpfr_neg (l, x, GMP_RNDU); /* upper bound on -x */
mpfr_log (l, l, GMP_RNDU); /* upper bound for log(-x) */
mpfr_neg (l, l, GMP_RNDD); /* lower bound for -log(-x) */
mpfr_neg (h, x, GMP_RNDD); /* lower bound on -x */
mpfr_log (h, h, GMP_RNDD); /* lower bound on log(-x) */
mpfr_neg (h, h, GMP_RNDU); /* upper bound for -log(-x) */
mpfr_sub (h, h, x, GMP_RNDU); /* upper bound for -log(-x) - x */
inex = mpfr_prec_round (l, MPFR_PREC (y), rnd);
inex2 = mpfr_prec_round (h, MPFR_PREC (y), rnd);
/* Caution: we not only need l = h, but both inexact flags
should agree. Indeed, one of the inexact flags might be
zero. In that case if we assume ln|gamma(x)| cannot be
exact, the other flag should be correct. We are conservative
here and request that both inexact flags agree. */
ok = SAME_SIGN (inex, inex2) && mpfr_equal_p (l, h);
if (ok)
mpfr_set (y, h, rnd); /* exact */
mpfr_clear (l);
mpfr_clear (h);
if (ok)
return inex;
/* if ulp(log(-x)) <= |x| there is no reason to loop,
since the width of [l, h] will be at least |x| */
if (MPFR_EXP(l) < MPFR_EXP(x) + (mp_exp_t) w)
break;
w += MPFR_INT_CEIL_LOG2(w) + 3;
}
}
}
inex = mpfr_lngamma_aux (y, x, rnd);
return inex;
}
#endif
|