summaryrefslogtreecommitdiff
path: root/log.c
blob: 6f0195e9944cd8adda507231e6b6eb997d209f70 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
/* mpfr_log -- natural logarithm of a floating-point number

Copyright (C) 1999 PolKA project, Inria Lorraine and Loria

This file is part of the MPFR Library.

The MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Library General Public License as published by
the Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

The MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Library General Public
License for more details.

You should have received a copy of the GNU Library General Public License
along with the MPFR Library; see the file COPYING.LIB.  If not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
MA 02111-1307, USA. */

#include <stdio.h>
#include <math.h>
#include "gmp.h"
#include "gmp-impl.h"
#include "mpfr.h"


  /* The computation of log(a) is done using the formula :
     if we want p bits of the result,
                       pi
	  log(a) ~ ------------  -   m log 2
		    2 AG(1,4/s)

     where s = x 2^m > 2^(p/2)

     More precisely, if F(x) = int(1/sqrt(1-(1-x^2)*sin(t)^2), t=0..PI/2),
     then for s>=1.26 we have log(s) < F(4/s) < log(s)*(1+4/s^2)
     from which we deduce pi/2/AG(1,4/s)*(1-4/s^2) < log(s) < pi/2/AG(1,4/s)
     so the relative error 4/s^2 is < 4/2^p i.e. 4 ulps.
  */


#define MON_INIT(xp, x, p, s) xp = (mp_ptr) TMP_ALLOC(s*BYTES_PER_MP_LIMB);    x -> _mp_prec = p; x -> _mp_d = xp; x -> _mp_size = s; x -> _mp_exp = 0; 

/* #define DEBUG */

int
#if __STDC__
mpfr_log(mpfr_ptr r, mpfr_srcptr a, mp_rnd_t rnd_mode) 
#else
mpfr_log(r, a, rnd_mode)
     mpfr_ptr r;
     mpfr_srcptr a;
     mp_rnd_t rnd_mode;
#endif
{
  int m, bool, size, cancel;
  mp_prec_t p, q;
  mpfr_t cst, rapport, agm, tmp1, tmp2, s, mm;
  mp_limb_t *cstp, *rapportp, *agmp, *tmp1p, *tmp2p, *sp, *mmp;
  double ref;
  TMP_DECL(marker);

  /* If a is NaN or a is negative or null, the result is NaN */
  if (MPFR_IS_NAN(a) || (MPFR_NOTZERO(a)==0) || (MPFR_SIGN(a)<0))
    { MPFR_SET_NAN(r); return 1; }

  /* If a is 1, the result is 0 */
  if (mpfr_cmp_ui_2exp(a,1,0)==0){
    MPFR_SET_ZERO(r);
    return 0; /* only case where the result is exact */
  }

  q=MPFR_PREC(r);
  
  ref=mpfr_get_d(a)-1.0;
  if (ref<0)
    ref=-ref;

  /* use initial precision about q+lg(q)+5 */
  p=q+5; m=q; while (m) { p++; m >>= 1; }

  /* adjust to entire limb */
  if (p%BITS_PER_MP_LIMB) p += BITS_PER_MP_LIMB - (p%BITS_PER_MP_LIMB);

  bool=1;

  while (bool==1) {
#ifdef DEBUG
    printf("a="); mpfr_print_raw(a); putchar('\n');
    printf("p=%d\n", p);
#endif
    /* Calculus of m (depends on p) */
    m=(int) ceil(((double) p)/2.0) -MPFR_EXP(a)+1;

    /* All the mpfr_t needed have a precision of p */
    TMP_MARK(marker);
    size=(p-1)/BITS_PER_MP_LIMB+1;
    MON_INIT(cstp, cst, p, size);  
    MON_INIT(rapportp, rapport, p, size);
    MON_INIT(agmp, agm, p, size);
    MON_INIT(tmp1p, tmp1, p, size);  
    MON_INIT(tmp2p, tmp2, p, size);  
    MON_INIT(sp, s, p, size);
    MON_INIT(mmp, mm, p, size);

    mpfr_set_si(mm,m,GMP_RNDN);           /* I have m, supposed exact */
    mpfr_set_si(tmp1,1,GMP_RNDN);         /* I have 1, exact */
    mpfr_set_si(tmp2,4,GMP_RNDN);         /* I have 4, exact */
    mpfr_mul_2exp(s,a,m,GMP_RNDN);        /* I compute s=a*2^m, err <= 1 ulp */
    mpfr_div(rapport,tmp2,s,GMP_RNDN);    /* I compute 4/s, err <= 2 ulps */
    mpfr_agm(agm,tmp1,rapport,GMP_RNDN);  /* AG(1,4/s), err<=3 ulps */
    mpfr_mul_2exp(tmp1,agm,1,GMP_RNDN);   /* 2*AG(1,4/s), still err<=3 ulps */
    mpfr_const_pi(cst, GMP_RNDN);         /* compute pi, err<=1ulp */
    mpfr_div(tmp2,cst,tmp1,GMP_RNDN);     /* pi/2*AG(1,4/s), err<=5ulps */
    mpfr_const_log2(cst,GMP_RNDN);        /* compute log(2), err<=1ulp */
    mpfr_mul(tmp1,cst,mm,GMP_RNDN);       /* I compute m*log(2), err<=2ulps */
    cancel = MPFR_EXP(tmp2); 
    mpfr_sub(cst,tmp2,tmp1,GMP_RNDN);     /* log(a), err<=7ulps+cancel */ 
    cancel -= MPFR_EXP(cst);
#ifdef DEBUG
    printf("cancelled bits=%d\n", cancel);
    printf("approx="); mpfr_print_raw(cst); putchar('\n');
#endif
    if (cancel<0) cancel=0;

    /* If we can round the result, we set it and go out of the loop */

    /* we have 7 ulps of error from the above roundings,
       4 ulps from the 4/s^2 second order term,
       plus the cancelled bits */
    if (mpfr_can_round(cst,p-cancel-4,GMP_RNDN,rnd_mode,q)==1) {
      mpfr_set(r,cst,rnd_mode);
#ifdef DEBUG
      printf("result="); mpfr_print_raw(r); putchar('\n');
#endif
      bool=0;
    }
    /* else we increase the precision */
    else {
      p += BITS_PER_MP_LIMB+cancel;
      TMP_FREE(marker);
    }

    /* We clean */
    TMP_FREE(marker);
    
  }
  return 1; /* result is inexact */
}