1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
|
/* mpfr_log -- natural logarithm of a floating-point number
Copyright 1999, 2000, 2001, 2002 Free Software Foundation.
This file is part of the MPFR Library.
The MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or (at your
option) any later version.
The MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the MPFR Library; see the file COPYING.LIB. If not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
MA 02111-1307, USA. */
#include <stdio.h>
#include "gmp.h"
#include "gmp-impl.h"
#include "mpfr.h"
#include "mpfr-impl.h"
/* The computation of log(a) is done using the formula :
if we want p bits of the result,
pi
log(a) ~ ------------ - m log 2
2 AG(1,4/s)
where s = x 2^m > 2^(p/2)
More precisely, if F(x) = int(1/sqrt(1-(1-x^2)*sin(t)^2), t=0..PI/2),
then for s>=1.26 we have log(s) < F(4/s) < log(s)*(1+4/s^2)
from which we deduce pi/2/AG(1,4/s)*(1-4/s^2) < log(s) < pi/2/AG(1,4/s)
so the relative error 4/s^2 is < 4/2^p i.e. 4 ulps.
*/
/* #define DEBUG */
int
mpfr_log (mpfr_ptr r, mpfr_srcptr a, mp_rnd_t rnd_mode)
{
int m, bool, size, cancel, inexact = 0;
mp_prec_t p, q;
mpfr_t cst, rapport, agm, tmp1, tmp2, s, mm;
mp_limb_t *cstp, *rapportp, *agmp, *tmp1p, *tmp2p, *sp, *mmp;
double ref;
TMP_DECL(marker);
/* If a is NaN, the result is NaN */
if (MPFR_IS_NAN(a))
{
MPFR_SET_NAN(r);
MPFR_RET_NAN;
}
MPFR_CLEAR_NAN(r);
/* check for infinity before zero */
if (MPFR_IS_INF(a))
{
if (MPFR_SIGN(a) < 0) /* log(-Inf) = NaN */
{
MPFR_SET_NAN(r);
MPFR_RET_NAN;
}
else /* log(+Inf) = +Inf */
{
MPFR_SET_INF(r);
MPFR_SET_POS(r);
MPFR_RET(0);
}
}
/* Now we can clear the flags without damage even if r == a */
MPFR_CLEAR_INF(r);
if (MPFR_IS_ZERO(a))
{
MPFR_SET_INF(r);
MPFR_SET_NEG(r);
MPFR_RET(0); /* log(0) is an exact -infinity */
}
/* If a is negative, the result is NaN */
if (MPFR_SIGN(a) < 0)
{
MPFR_SET_NAN(r);
MPFR_RET_NAN;
}
/* If a is 1, the result is 0 */
if (mpfr_cmp_ui (a, 1) == 0)
{
MPFR_SET_ZERO(r);
MPFR_SET_POS(r);
MPFR_RET(0); /* only "normal" case where the result is exact */
}
q=MPFR_PREC(r);
ref=mpfr_get_d(a)-1.0;
if (ref<0)
ref=-ref;
/* use initial precision about q+lg(q)+5 */
p=q+5; m=q; while (m) { p++; m >>= 1; }
/* adjust to entire limb */
if (p%BITS_PER_MP_LIMB) p += BITS_PER_MP_LIMB - (p%BITS_PER_MP_LIMB);
bool=1;
while (bool==1) {
#ifdef DEBUG
printf("a="); mpfr_print_binary(a); putchar('\n');
printf("p=%d\n", p);
#endif
/* Calculus of m (depends on p) */
m = (p + 1) / 2 - MPFR_EXP(a) + 1;
/* All the mpfr_t needed have a precision of p */
TMP_MARK(marker);
size=(p-1)/BITS_PER_MP_LIMB+1;
MPFR_INIT(cstp, cst, p, size);
MPFR_INIT(rapportp, rapport, p, size);
MPFR_INIT(agmp, agm, p, size);
MPFR_INIT(tmp1p, tmp1, p, size);
MPFR_INIT(tmp2p, tmp2, p, size);
MPFR_INIT(sp, s, p, size);
MPFR_INIT(mmp, mm, p, size);
mpfr_set_si (mm, m, GMP_RNDN); /* I have m, supposed exact */
mpfr_set_si (tmp1, 1, GMP_RNDN); /* I have 1, exact */
mpfr_set_si (tmp2, 4, GMP_RNDN); /* I have 4, exact */
mpfr_mul_2si (s, a, m, GMP_RNDN); /* I compute s=a*2^m, err <= 1 ulp */
mpfr_div (rapport, tmp2, s, GMP_RNDN);/* I compute 4/s, err <= 2 ulps */
mpfr_agm (agm, tmp1, rapport, GMP_RNDN); /* AG(1,4/s), err<=3 ulps */
mpfr_mul_2ui (tmp1, agm, 1, GMP_RNDN); /* 2*AG(1,4/s), still err<=3 ulps */
mpfr_const_pi (cst, GMP_RNDN); /* compute pi, err<=1ulp */
mpfr_div (tmp2, cst, tmp1, GMP_RNDN); /* pi/2*AG(1,4/s), err<=5ulps */
mpfr_const_log2 (cst, GMP_RNDN); /* compute log(2), err<=1ulp */
mpfr_mul(tmp1,cst,mm,GMP_RNDN); /* I compute m*log(2), err<=2ulps */
cancel = MPFR_EXP(tmp2);
mpfr_sub(cst,tmp2,tmp1,GMP_RNDN); /* log(a), err<=7ulps+cancel */
cancel -= MPFR_EXP(cst);
#ifdef DEBUG
printf("canceled bits=%d\n", cancel);
printf("approx="); mpfr_print_binary(cst); putchar('\n');
#endif
if (cancel<0) cancel=0;
/* If we can round the result, we set it and go out of the loop */
/* we have 7 ulps of error from the above roundings,
4 ulps from the 4/s^2 second order term,
plus the canceled bits */
if (mpfr_can_round (cst, p - cancel - 4, GMP_RNDN, rnd_mode, q) == 1) {
inexact = mpfr_set (r, cst, rnd_mode);
#ifdef DEBUG
printf("result="); mpfr_print_binary(r); putchar('\n');
#endif
bool=0;
}
/* else we increase the precision */
else {
p += BITS_PER_MP_LIMB + cancel;
}
/* We clean */
TMP_FREE(marker);
}
return inexact; /* result is inexact */
}
|