1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
|
/* mpfr_log1p -- Compute log(1+x)
Copyright 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
This file is part of the MPFR Library.
The MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or (at your
option) any later version.
The MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the MPFR Library; see the file COPYING.LIB. If not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
MA 02111-1307, USA. */
#define MPFR_NEED_LONGLONG_H
#include "mpfr-impl.h"
/* The computation of log1p is done by
log1p(x)=log(1+x) */
int
mpfr_log1p (mpfr_ptr y, mpfr_srcptr x, mp_rnd_t rnd_mode)
{
int comp, inexact = 0;
if (MPFR_UNLIKELY( MPFR_IS_SINGULAR(x)))
{
if (MPFR_IS_NAN(x))
{
MPFR_SET_NAN(y);
MPFR_RET_NAN;
}
/* check for inf or -inf (result is not defined) */
else if (MPFR_IS_INF(x))
{
if (MPFR_IS_POS(x))
{
MPFR_SET_INF(y);
MPFR_SET_POS(y);
MPFR_RET(0);
}
else
{
MPFR_SET_NAN(y);
MPFR_RET_NAN;
}
}
else /* x is zero */
{
MPFR_ASSERTD(MPFR_IS_ZERO(x));
MPFR_SET_ZERO(y); /* log1p(+/- 0) = +/- 0 */
MPFR_SET_SAME_SIGN(y, x);
MPFR_RET(0);
}
}
comp = mpfr_cmp_si (x, -1);
/* log1p(x) is undefined for x < -1 */
if (MPFR_UNLIKELY(comp <= 0))
{
if (comp == 0)
/* x=0: log1p(-1)=-inf (division by zero) */
{
MPFR_SET_INF(y);
MPFR_SET_NEG(y);
MPFR_RET(0);
}
MPFR_SET_NAN(y);
MPFR_RET_NAN;
}
MPFR_CLEAR_FLAGS(y);
/* General case */
{
/* Declaration of the intermediary variable */
mpfr_t t;
/* Declaration of the size variable */
mp_prec_t Nx = MPFR_PREC(x); /* Precision of input variable */
mp_prec_t Ny = MPFR_PREC(y); /* Precision of input variable */
mp_prec_t Nt; /* Precision of the intermediary variable */
long int err; /* Precision of error */
/* compute the precision of intermediary variable */
Nt = MAX(Nx,Ny);
/* the optimal number of bits : see algorithms.ps */
Nt = Nt + 5 + MPFR_INT_CEIL_LOG2 (Nt);
/* initialise of intermediary variable */
mpfr_init (t);
/* First computation of cosh */
do
{
/* reactualisation of the precision */
mpfr_set_prec (t, Nt);
/* compute log1p */
mpfr_add_ui (t, x, 1, GMP_RNDN); /* 1+x */
mpfr_log (t, t, GMP_RNDN); /* log(1+x)*/
/* estimation of the error */
/*err=Nt-(__gmpfr_ceil_log2(1+pow(2,1-MPFR_GET_EXP(t))));*/
err = Nt - (MAX (1 - MPFR_GET_EXP (t), 0) + 1);
/* actualisation of the precision */
Nt += 10;
}
while ((err < 0) || !mpfr_can_round (t, err, GMP_RNDN, GMP_RNDZ,
Ny + (rnd_mode == GMP_RNDN)));
inexact = mpfr_set (y, t, rnd_mode);
mpfr_clear (t);
}
return inexact;
}
|