1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
|
/* mpfr_mul -- multiply two floating-point numbers
Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005
Free Software Foundation, Inc.
This file is part of the MPFR Library.
The MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or (at your
option) any later version.
The MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the MPFR Library; see the file COPYING.LIB. If not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
MA 02111-1307, USA. */
#include <stdio.h>
#define MPFR_NEED_LONGLONG_H
#include "mpfr-impl.h"
/********* BEGINNING CHECK *************/
/* Check if we have to check the result of mpfr_mul.
TODO: Find a better (and faster?) check than using old implementation */
#ifdef WANT_ASSERT
# if WANT_ASSERT >= 2
int mpfr_mul2 (mpfr_ptr a, mpfr_srcptr b, mpfr_srcptr c, mp_rnd_t rnd_mode);
static int
mpfr_mul3 (mpfr_ptr a, mpfr_srcptr b, mpfr_srcptr c, mp_rnd_t rnd_mode)
{
/* Old implementation */
int sign_product, cc, inexact;
mp_exp_t ax;
mp_limb_t *tmp;
mp_limb_t b1;
mp_prec_t bq, cq;
mp_size_t bn, cn, tn, k;
TMP_DECL(marker);
/* deal with special cases */
if (MPFR_ARE_SINGULAR(b,c))
{
if (MPFR_IS_NAN(b) || MPFR_IS_NAN(c))
{
MPFR_SET_NAN(a);
MPFR_RET_NAN;
}
sign_product = MPFR_MULT_SIGN( MPFR_SIGN(b) , MPFR_SIGN(c) );
if (MPFR_IS_INF(b))
{
if (MPFR_IS_INF(c) || MPFR_NOTZERO(c))
{
MPFR_SET_SIGN(a,sign_product);
MPFR_SET_INF(a);
MPFR_RET(0); /* exact */
}
else
{
MPFR_SET_NAN(a);
MPFR_RET_NAN;
}
}
else if (MPFR_IS_INF(c))
{
if (MPFR_NOTZERO(b))
{
MPFR_SET_SIGN(a, sign_product);
MPFR_SET_INF(a);
MPFR_RET(0); /* exact */
}
else
{
MPFR_SET_NAN(a);
MPFR_RET_NAN;
}
}
else
{
MPFR_ASSERTD(MPFR_IS_ZERO(b) || MPFR_IS_ZERO(c));
MPFR_SET_SIGN(a, sign_product);
MPFR_SET_ZERO(a);
MPFR_RET(0); /* 0 * 0 is exact */
}
}
MPFR_CLEAR_FLAGS(a);
sign_product = MPFR_MULT_SIGN( MPFR_SIGN(b) , MPFR_SIGN(c) );
ax = MPFR_GET_EXP (b) + MPFR_GET_EXP (c);
bq = MPFR_PREC(b);
cq = MPFR_PREC(c);
MPFR_ASSERTD(bq+cq > bq); /* PREC_MAX is /2 so no integer overflow */
bn = (bq+BITS_PER_MP_LIMB-1)/BITS_PER_MP_LIMB; /* number of limbs of b */
cn = (cq+BITS_PER_MP_LIMB-1)/BITS_PER_MP_LIMB; /* number of limbs of c */
k = bn + cn; /* effective nb of limbs used by b*c (= tn or tn+1) below */
tn = (bq + cq + BITS_PER_MP_LIMB - 1) / BITS_PER_MP_LIMB;
/* <= k, thus no int overflow */
MPFR_ASSERTD(tn <= k);
/* Check for no size_t overflow*/
MPFR_ASSERTD((size_t) k <= ((size_t) ~0) / BYTES_PER_MP_LIMB);
TMP_MARK(marker);
tmp = (mp_limb_t *) TMP_ALLOC((size_t) k * BYTES_PER_MP_LIMB);
/* multiplies two mantissa in temporary allocated space */
b1 = (MPFR_LIKELY(bn >= cn)) ?
mpn_mul (tmp, MPFR_MANT(b), bn, MPFR_MANT(c), cn)
: mpn_mul (tmp, MPFR_MANT(c), cn, MPFR_MANT(b), bn);
/* now tmp[0]..tmp[k-1] contains the product of both mantissa,
with tmp[k-1]>=2^(BITS_PER_MP_LIMB-2) */
b1 >>= BITS_PER_MP_LIMB - 1; /* msb from the product */
/* if the mantissas of b and c are uniformly distributed in ]1/2, 1],
then their product is in ]1/4, 1/2] with probability 2*ln(2)-1 ~ 0.386
and in [1/2, 1] with probability 2-2*ln(2) ~ 0.614 */
tmp += k - tn;
if (MPFR_UNLIKELY(b1 == 0))
mpn_lshift (tmp, tmp, tn, 1); /* tn <= k, so no stack corruption */
cc = mpfr_round_raw (MPFR_MANT (a), tmp, bq + cq,
MPFR_IS_NEG_SIGN(sign_product),
MPFR_PREC (a), rnd_mode, &inexact);
/* cc = 1 ==> result is a power of two */
if (MPFR_UNLIKELY(cc))
MPFR_MANT(a)[MPFR_LIMB_SIZE(a)-1] = MPFR_LIMB_HIGHBIT;
TMP_FREE(marker);
{
mp_exp_t ax2 = ax + (mp_exp_t) (b1 - 1 + cc);
if (MPFR_UNLIKELY( ax2 > __gmpfr_emax))
return mpfr_overflow (a, rnd_mode, sign_product);
if (MPFR_UNLIKELY( ax2 < __gmpfr_emin))
{
/* In the rounding to the nearest mode, if the exponent of the exact
result (i.e. before rounding, i.e. without taking cc into account)
is < __gmpfr_emin - 1 or the exact result is a power of 2 (i.e. if
both arguments are powers of 2), then round to zero. */
if (rnd_mode == GMP_RNDN &&
(ax + (mp_exp_t) b1 < __gmpfr_emin ||
(mpfr_powerof2_raw (b) && mpfr_powerof2_raw (c))))
rnd_mode = GMP_RNDZ;
return mpfr_underflow (a, rnd_mode, sign_product);
}
MPFR_SET_EXP (a, ax2);
MPFR_SET_SIGN(a, sign_product);
}
return inexact;
}
int
mpfr_mul (mpfr_ptr a, mpfr_srcptr b, mpfr_srcptr c, mp_rnd_t rnd_mode)
{
mpfr_t ta, tb, tc;
int inexact1, inexact2;
mpfr_init2 (ta, MPFR_PREC (a));
mpfr_init2 (tb, MPFR_PREC (b));
mpfr_init2 (tc, MPFR_PREC (c));
MPFR_ASSERTN (mpfr_set (tb, b, GMP_RNDN) == 0);
MPFR_ASSERTN (mpfr_set (tc, c, GMP_RNDN) == 0);
inexact2 = mpfr_mul3 (ta, tb, tc, rnd_mode);
inexact1 = mpfr_mul2 (a, b, c, rnd_mode);
if (mpfr_cmp (ta, a) || inexact1*inexact2 < 0
|| (inexact1*inexact2 == 0 && (inexact1|inexact2) != 0))
{
printf("mpfr_mul return different values for %s\n"
"Prec_a= %lu Prec_b= %lu Prec_c= %lu\nB=",
mpfr_print_rnd_mode (rnd_mode),
MPFR_PREC (a), MPFR_PREC (b), MPFR_PREC (c));
mpfr_out_str (stdout, 16, 0, tb, GMP_RNDN);
printf("\nC="); mpfr_out_str (stdout, 16, 0, tc, GMP_RNDN);
printf("\nOldMul: "); mpfr_out_str (stdout, 16, 0, ta, GMP_RNDN);
printf("\nNewMul: "); mpfr_out_str (stdout, 16, 0, a, GMP_RNDN);
printf("\nNewInexact = %d | OldInexact = %d\n", inexact1, inexact2);
MPFR_ASSERTN(0);
}
mpfr_clears (ta, tb, tc, NULL);
return inexact1;
}
# define mpfr_mul mpfr_mul2
# endif
#endif
/****** END OF CHECK *******/
/* Multiply 2 mpfr_t */
int
mpfr_mul (mpfr_ptr a, mpfr_srcptr b, mpfr_srcptr c, mp_rnd_t rnd_mode)
{
int sign, inexact;
mp_exp_t ax, ax2;
mp_limb_t *tmp;
mp_limb_t b1;
mp_prec_t bq, cq;
mp_size_t bn, cn, tn, k;
TMP_DECL (marker);
MPFR_LOG_FUNC (("b[%#R]=%R c[%#R]=%R rnd=%d", b, b, c, c, rnd_mode),
("a[%#R]=%R inexact=%d", a, a, inexact));
/* deal with special cases */
if (MPFR_ARE_SINGULAR (b, c))
{
if (MPFR_IS_NAN (b) || MPFR_IS_NAN (c))
{
MPFR_SET_NAN (a);
MPFR_RET_NAN;
}
sign = MPFR_MULT_SIGN (MPFR_SIGN (b), MPFR_SIGN (c));
if (MPFR_IS_INF (b))
{
if (!MPFR_IS_ZERO (c))
{
MPFR_SET_SIGN (a, sign);
MPFR_SET_INF (a);
MPFR_RET (0);
}
else
{
MPFR_SET_NAN (a);
MPFR_RET_NAN;
}
}
else if (MPFR_IS_INF (c))
{
if (!MPFR_IS_ZERO (b))
{
MPFR_SET_SIGN (a, sign);
MPFR_SET_INF (a);
MPFR_RET(0);
}
else
{
MPFR_SET_NAN (a);
MPFR_RET_NAN;
}
}
else
{
MPFR_ASSERTD (MPFR_IS_ZERO(b) || MPFR_IS_ZERO(c));
MPFR_SET_SIGN (a, sign);
MPFR_SET_ZERO (a);
MPFR_RET (0);
}
}
MPFR_CLEAR_FLAGS (a);
sign = MPFR_MULT_SIGN (MPFR_SIGN (b), MPFR_SIGN (c));
ax = MPFR_GET_EXP (b) + MPFR_GET_EXP (c);
/* Note: the exponent of the exact result will be e = bx + cx + ec with
ec in {-1,0,1} and the following assumes that e is representable. */
/* FIXME: Useful since we do an exponent check after ?
* It is useful iff the precision is big, there is an overflow
* and we are doing further mults...*/
#ifdef HUGE
if (MPFR_UNLIKELY (ax > __gmpfr_emax + 1))
return mpfr_overflow (a, rnd_mode, sign);
if (MPFR_UNLIKELY (ax < __gmpfr_emin - 2))
return mpfr_underflow (a, rnd_mode == GMP_RNDN ? GMP_RNDZ : rnd_mode,
sign);
#endif
bq = MPFR_PREC (b);
cq = MPFR_PREC (c);
MPFR_ASSERTD (bq+cq > bq); /* PREC_MAX is /2 so no integer overflow */
bn = (bq+BITS_PER_MP_LIMB-1)/BITS_PER_MP_LIMB; /* number of limbs of b */
cn = (cq+BITS_PER_MP_LIMB-1)/BITS_PER_MP_LIMB; /* number of limbs of c */
k = bn + cn; /* effective nb of limbs used by b*c (= tn or tn+1) below */
tn = (bq + cq + BITS_PER_MP_LIMB - 1) / BITS_PER_MP_LIMB;
MPFR_ASSERTD (tn <= k); /* tn <= k, thus no int overflow */
/* Check for no size_t overflow*/
MPFR_ASSERTD ((size_t) k <= ((size_t) ~0) / BYTES_PER_MP_LIMB);
TMP_MARK (marker);
tmp = (mp_limb_t *) TMP_ALLOC ((size_t) k * BYTES_PER_MP_LIMB);
/* multiplies two mantissa in temporary allocated space */
#if 0
b1 = MPFR_LIKELY (bn >= cn)
? mpn_mul (tmp, MPFR_MANT (b), bn, MPFR_MANT (c), cn)
: mpn_mul (tmp, MPFR_MANT (c), cn, MPFR_MANT (b), bn);
/* now tmp[0]..tmp[k-1] contains the product of both mantissa,
with tmp[k-1]>=2^(BITS_PER_MP_LIMB-2) */
b1 >>= BITS_PER_MP_LIMB - 1; /* msb from the product */
/* if the mantissas of b and c are uniformly distributed in ]1/2, 1],
then their product is in ]1/4, 1/2] with probability 2*ln(2)-1 ~ 0.386
and in [1/2, 1] with probability 2-2*ln(2) ~ 0.614 */
tmp += k - tn;
if (MPFR_UNLIKELY (b1 == 0))
mpn_lshift (tmp, tmp, tn, 1); /* tn <= k, so no stack corruption */
#else
if (MPFR_UNLIKELY (bn < cn))
{
mpfr_srcptr tmp = b;
mp_size_t tn = bn;
b = c;
bn = cn;
c = tmp;
cn = tn;
}
MPFR_ASSERTD (bn >= cn);
if (MPFR_UNLIKELY (bn > MPFR_MUL_THRESHOLD))
{
mp_limb_t *bp, *cp;
mp_size_t n;
mp_prec_t p;
/* Compute estimated precision of mulhigh.
We could use `+ (n < cn) + (n < bn)' instead of `+ 2',
but does it worth it? */
n = MPFR_LIMB_SIZE (a) + 1;
n = MIN (n, cn);
MPFR_ASSERTD (n >= 1 && 2*n <= k && n <= cn && n <= bn);
p = n*BITS_PER_MP_LIMB - MPFR_INT_CEIL_LOG2 (n + 2);
bp = MPFR_MANT (b) + bn - n;
cp = MPFR_MANT (c) + cn - n;
/* Check if MulHigh can produce a roundable result.
We may lost 1 bit due to RNDN, 1 due to final shift. */
if (MPFR_UNLIKELY (MPFR_PREC (a) > p - 5))
{
if (MPFR_UNLIKELY (MPFR_PREC (a) > p - 5 + BITS_PER_MP_LIMB))
{
/* MulHigh can't produce a roundable result. */
MPFR_LOG_MSG (("mpfr_mulhigh can't be used (%lu VS %lu)\n",
MPFR_PREC (a), p));
goto full_multiply;
}
/* Add one extra limb to mantissa of b and c. */
if (bn > n)
bp --;
else
{
bp = TMP_ALLOC ((n+1)*sizeof (mp_limb_t));
bp[0] = 0;
MPN_COPY (bp+1, MPFR_MANT (b)+bn-n, n);
}
if (cn > n)
cp --; /* FIXME: Could this happen? */
else
{
cp = TMP_ALLOC ((n+1)*sizeof (mp_limb_t));
cp[0] = 0;
MPN_COPY (cp+1, MPFR_MANT (c)+cn-n, n);
}
/* We will compute with one extra limb */
n++;
p = n*BITS_PER_MP_LIMB - MPFR_INT_CEIL_LOG2 (n + 2);
p += BITS_PER_MP_LIMB;
MPFR_ASSERTD (MPFR_PREC (a) <= p - 5);
if (MPFR_LIKELY (k < 2*n))
{
tmp = TMP_ALLOC (2*n*sizeof (mp_limb_t));
tmp += 2*n-k; /* `tmp' still points to an area of `k' limbs */
}
}
MPFR_LOG_MSG (("Use mpfr_mulhigh (%lu VS %lu)\n", MPFR_PREC (a), p));
/* Compute an approximation of the product of b and c */
mpfr_mulhigh_n (tmp+k-2*n, bp, cp, n);
/* now tmp[0]..tmp[k-1] contains the product of both mantissa,
with tmp[k-1]>=2^(BITS_PER_MP_LIMB-2) */
b1 = tmp[k-1] >> (BITS_PER_MP_LIMB - 1); /* msb from the product */
/* If the mantissas of b and c are uniformly distributed in ]1/2, 1],
then their product is in ]1/4, 1/2] with probability 2*ln(2)-1 ~ 0.386
and in [1/2, 1] with probability 2-2*ln(2) ~ 0.614 */
tmp += k - tn;
if (MPFR_UNLIKELY (b1 == 0))
mpn_lshift (tmp, tmp, tn, 1);
MPFR_ASSERTD (MPFR_LIMB_MSB (tmp[tn-1]) != 0);
if (MPFR_UNLIKELY (!mpfr_round_p (tmp, tn, p+b1-1,
MPFR_PREC(a)+(rnd_mode==GMP_RNDN))))
{
tmp -= k-tn; /* tmp may have changed, FIX IT!!!!! */
goto full_multiply;
}
}
else
{
full_multiply:
MPFR_LOG_MSG (("Use mpn_mul\n", 0));
b1 = mpn_mul (tmp, MPFR_MANT (b), bn, MPFR_MANT (c), cn);
/* now tmp[0]..tmp[k-1] contains the product of both mantissa,
with tmp[k-1]>=2^(BITS_PER_MP_LIMB-2) */
b1 >>= BITS_PER_MP_LIMB - 1; /* msb from the product */
/* if the mantissas of b and c are uniformly distributed in ]1/2, 1],
then their product is in ]1/4, 1/2] with probability 2*ln(2)-1 ~ 0.386
and in [1/2, 1] with probability 2-2*ln(2) ~ 0.614 */
tmp += k - tn;
if (MPFR_UNLIKELY (b1 == 0))
mpn_lshift (tmp, tmp, tn, 1); /* tn <= k, so no stack corruption */
}
#endif
ax2 = ax + (mp_exp_t) (b1 - 1);
MPFR_RNDRAW (inexact, a, tmp, bq+cq, rnd_mode, sign, ax2++);
TMP_FREE (marker);
MPFR_EXP (a) = ax2; /* Can't use MPFR_SET_EXP: Expo may be out of range */
MPFR_SET_SIGN (a, sign);
if (MPFR_UNLIKELY (ax2 > __gmpfr_emax))
return mpfr_overflow (a, rnd_mode, sign);
if (MPFR_UNLIKELY (ax2 < __gmpfr_emin))
{
/* In the rounding to the nearest mode, if the exponent of the exact
result (i.e. before rounding, i.e. without taking cc into account)
is < __gmpfr_emin - 1 or the exact result is a power of 2 (i.e. if
both arguments are powers of 2), then round to zero. */
if (rnd_mode == GMP_RNDN
&& (ax + (mp_exp_t) b1 < __gmpfr_emin
|| (mpfr_powerof2_raw (b) && mpfr_powerof2_raw (c))))
rnd_mode = GMP_RNDZ;
return mpfr_underflow (a, rnd_mode, sign);
}
return inexact;
}
|