summaryrefslogtreecommitdiff
path: root/pow.c
blob: 69e438793f99ce90df4ac9999656923794eee234 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
/* mpfr_pow -- power function x^y

Copyright 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.

This file is part of the MPFR Library.

The MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or (at your
option) any later version.

The MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
License for more details.

You should have received a copy of the GNU Lesser General Public License
along with the MPFR Library; see the file COPYING.LIB.  If not, write to
the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston,
MA 02110-1301, USA. */

#define MPFR_NEED_LONGLONG_H
#include "mpfr-impl.h"

/* return non zero iff x^y is exact.
   Assumes x and y are ordinary numbers,
   y is not an integer, x is not a power of 2 and x is positive

   If x^y is exact, it computes it.
*/
static int
mpfr_pow_is_exact (mpfr_ptr z, mpfr_srcptr x, mpfr_srcptr y,
                   mp_rnd_t rnd_mode, int *inexact)
{
  mpz_t a, c;
  mp_exp_t d, b;
  unsigned long i;
  int res;

  MPFR_ASSERTD (!MPFR_IS_SINGULAR (y));
  MPFR_ASSERTD (!MPFR_IS_SINGULAR (x));
  MPFR_ASSERTD (!mpfr_integer_p (y));
  MPFR_ASSERTD (mpfr_cmp_si_2exp (x, MPFR_INT_SIGN (x),
                                  MPFR_GET_EXP (x) - 1) != 0);
  MPFR_ASSERTD (MPFR_IS_POS (x));

  if (MPFR_IS_NEG (y))
    return 0; /* x is not a power of two => x^-y is not exact */

  /* compute d such that y = c*2^d with c odd integer */
  mpz_init (c);
  d = mpfr_get_z_exp (c, y);
  i = mpz_scan1 (c, 0);
  mpz_div_2exp (c, c, i);
  d += i;
  /* now y=c*2^d with c odd */
  /* Since y is not an integer, d is necessarily < 0 */
  MPFR_ASSERTD (d < 0);

  /* Compute a,b such that x=a*2^b */
  mpz_init (a);
  b = mpfr_get_z_exp (a, x);
  i = mpz_scan1 (a, 0);
  mpz_div_2exp (a, a, i);
  b += i;
  /* now x=a*2^b with a is odd */

  for (res = 1 ; d != 0 ; d++)
    {
      /* a*2^b is a square iff
            (i)  a is a square when b is even
            (ii) 2*a is a square when b is odd */
      if (b % 2 != 0)
        {
          mpz_mul_2exp (a, a, 1); /* 2*a */
          b --;
        }
      MPFR_ASSERTD ((b % 2) == 0);
      if (!mpz_perfect_square_p (a))
        {
          res = 0;
          goto end;
        }
      mpz_sqrt (a, a);
      b = b / 2;
    }
  /* Now x = (a'*2^b')^(2^-d) with d < 0
     so x^y = ((a'*2^b')^(2^-d))^(c*2^d)
            = ((a'*2^b')^c with c odd integer */
  {
    mpfr_t tmp;
    mp_prec_t p;
    MPFR_MPZ_SIZEINBASE2 (p, a);
    mpfr_init2 (tmp, p); /* prec = 1 should not be possible */
    res = mpfr_set_z (tmp, a, GMP_RNDN);
    MPFR_ASSERTD (res == 0);
    res = mpfr_mul_2si (tmp, tmp, b, GMP_RNDN);
    MPFR_ASSERTD (res == 0);
    *inexact = mpfr_pow_z (z, tmp, c, rnd_mode);
    mpfr_clear (tmp);
    res = 1;
  }
 end:
  mpz_clear (a);
  mpz_clear (c);
  return res;
}

/* Return 1 if y is an odd integer, 0 otherwise. */
static int
is_odd (mpfr_srcptr y)
{
  mp_exp_t expo;
  mp_prec_t prec;
  mp_size_t yn;
  mp_limb_t *yp;

  /* NAN, INF or ZERO are not allowed */
  MPFR_ASSERTD (!MPFR_IS_SINGULAR (y));

  expo = MPFR_GET_EXP (y);
  if (expo <= 0)
    return 0;  /* |y| < 1 and not 0 */

  prec = MPFR_PREC(y);
  if ((mpfr_prec_t) expo > prec)
    return 0;  /* y is a multiple of 2^(expo-prec), thus not odd */

  /* 0 < expo <= prec */

  yn = (prec - 1) / BITS_PER_MP_LIMB;  /* index of last limb */
  yn -= (mp_size_t) (expo / BITS_PER_MP_LIMB);
  MPFR_ASSERTN(yn >= 0);
  /* now the index of the last limb containing bits of the fractional part */

  yp = MPFR_MANT(y);
  if (expo % BITS_PER_MP_LIMB == 0 ? (yp[yn+1] & 1) == 0 || yp[yn] != 0
      : yp[yn] << ((expo % BITS_PER_MP_LIMB) - 1) != MPFR_LIMB_HIGHBIT)
    return 0;
  while (--yn >= 0)
    if (yp[yn] != 0)
      return 0;
  return 1;
}

/* The computation of z = pow(x,y) is done by
   z = exp(y * log(x)) = x^y
   For the special cases, see Section F.9.4.4 of the C standard:
     _ pow(±0, y) = ±inf for y an odd integer < 0.
     _ pow(±0, y) = +inf for y < 0 and not an odd integer.
     _ pow(±0, y) = ±0 for y an odd integer > 0.
     _ pow(±0, y) = +0 for y > 0 and not an odd integer.
     _ pow(-1, ±inf) = 1.
     _ pow(+1, y) = 1 for any y, even a NaN.
     _ pow(x, ±0) = 1 for any x, even a NaN.
     _ pow(x, y) = NaN for finite x < 0 and finite non-integer y.
     _ pow(x, -inf) = +inf for |x| < 1.
     _ pow(x, -inf) = +0 for |x| > 1.
     _ pow(x, +inf) = +0 for |x| < 1.
     _ pow(x, +inf) = +inf for |x| > 1.
     _ pow(-inf, y) = -0 for y an odd integer < 0.
     _ pow(-inf, y) = +0 for y < 0 and not an odd integer.
     _ pow(-inf, y) = -inf for y an odd integer > 0.
     _ pow(-inf, y) = +inf for y > 0 and not an odd integer.
     _ pow(+inf, y) = +0 for y < 0.
     _ pow(+inf, y) = +inf for y > 0. */
int
mpfr_pow (mpfr_ptr z, mpfr_srcptr x, mpfr_srcptr y, mp_rnd_t rnd_mode)
{
  int inexact = 1;
  MPFR_SAVE_EXPO_DECL (expo);

  MPFR_LOG_FUNC (("x[%#R]=%R y[%#R]=%R rnd=%d", x, x, y, y, rnd_mode),
                 ("z[%#R]=%R inexact=%d", z, z, inexact));

  if (MPFR_ARE_SINGULAR (x, y))
    {
      /* pow(x, 0) returns 1 for any x, even a NaN. */
      if (MPFR_UNLIKELY (MPFR_IS_ZERO (y)))
        return mpfr_set (z, __gmpfr_one, rnd_mode);
      else if (MPFR_IS_NAN (x))
        {
          MPFR_SET_NAN (z);
          MPFR_RET_NAN;
        }
      else if (MPFR_IS_NAN (y))
        {
          /* pow(+1, NaN) returns 1. */
          if (mpfr_cmp (x, __gmpfr_one) == 0)
            return mpfr_set (z, __gmpfr_one, rnd_mode);
          MPFR_SET_NAN (z);
          MPFR_RET_NAN;
        }
      else if (MPFR_IS_INF (y))
        {
          if (MPFR_IS_INF (x))
            {
              if (MPFR_IS_POS (y))
                MPFR_SET_INF (z);
              else
                MPFR_SET_ZERO (z);
              MPFR_SET_POS (z);
              MPFR_RET (0);
            }
          else
            {
              int cmp;
              cmp = mpfr_cmpabs (x, __gmpfr_one) * MPFR_INT_SIGN (y);
              MPFR_SET_POS (z);
              if (cmp > 0)
                {
                  /* Return +inf. */
                  MPFR_SET_INF (z);
                  MPFR_RET (0);
                }
              else if (cmp < 0)
                {
                  /* Return +0. */
                  MPFR_SET_ZERO (z);
                  MPFR_RET (0);
                }
              else
                {
                  /* Return 1. */
                  return mpfr_set (z, __gmpfr_one, rnd_mode);
                }
            }
        }
      else if (MPFR_IS_INF (x))
        {
          int negative;
          /* Determine the sign now, in case y and z are the same object */
          negative = MPFR_IS_NEG (x) && is_odd (y);
          if (MPFR_IS_POS (y))
            MPFR_SET_INF (z);
          else
            MPFR_SET_ZERO (z);
          if (negative)
            MPFR_SET_NEG (z);
          else
            MPFR_SET_POS (z);
          MPFR_RET (0);
        }
      else
        {
          int negative;
          MPFR_ASSERTD (MPFR_IS_ZERO (x));
          /* Determine the sign now, in case y and z are the same object */
          negative = MPFR_IS_NEG(x) && is_odd (y);
          if (MPFR_IS_NEG (y))
            MPFR_SET_INF (z);
          else
            MPFR_SET_ZERO (z);
          if (negative)
            MPFR_SET_NEG (z);
          else
            MPFR_SET_POS (z);
          MPFR_RET (0);
        }
    }

  if (mpfr_cmp (x, __gmpfr_one) == 0) /* 1^y is always 1 */
    return mpfr_set (z, __gmpfr_one, rnd_mode);

  /* detect overflows: |x^y| >= 2^EMAX when (EXP(x)-1) * y >= EMAX for y > 0,
                                       or   EXP(x) * y     >= EMAX for y < 0 */
  {
    double exy;
    int negative;

    exy = (double) (mpfr_sgn (y) > 0) ? MPFR_EXP(x) - 1 : MPFR_EXP(x);
    exy *= mpfr_get_d (y, GMP_RNDZ);
    if (exy >= (double) __gmpfr_emax)
      {
        negative = MPFR_SIGN(x) < 0 && is_odd (y);
        return mpfr_overflow (z, rnd_mode, negative ? -1 : 1);
      }
  }

  /* detect underflows: for x > 0, y < 0, |x^y| = |(1/x)^(-y)|
                        <= 2^((1-EXP(x))*(-y)) */
  if (MPFR_IS_NEG(y) && MPFR_EXP(x) > 1)
  {
    mpfr_t tmp;
    int underflow;

    mpfr_init2 (tmp, 53);
    mpfr_neg (tmp, y, GMP_RNDZ);
    mpfr_mul_si (tmp, tmp, 1 - MPFR_EXP(x), GMP_RNDZ);
    underflow = mpfr_cmp_si (tmp, __gmpfr_emin - 2) <= 0;
    mpfr_clear (tmp);
    if (underflow)
      /* warning: mpfr_underflow rounds away from 0 for GMP_RNDN */
      return mpfr_underflow (z, (rnd_mode == GMP_RNDN) ? GMP_RNDZ : rnd_mode, 1);
  }

  if (mpfr_integer_p (y))
    {
      mpz_t zi;

      mpz_init (zi);
      mpfr_get_z (zi, y, GMP_RNDN);
      inexact = mpfr_pow_z (z, x, zi, rnd_mode);
      mpz_clear (zi);
      return inexact;
    }

  /* x^y for x<0 and y not an integer is not defined */
  if (MPFR_IS_NEG (x))
    {
      MPFR_SET_NAN (z);
      MPFR_RET_NAN;
    }

  /* Special case (2^b)^Y which could be exact */
  if (mpfr_cmp_si_2exp (x, 1, MPFR_GET_EXP (x) - 1) == 0)
    {
      mpfr_t tmp;
      mp_exp_t b;
      /* now x = 2^b, so x^y = 2^(b*y) is exact whenever b*y is an integer */
      b = MPFR_GET_EXP (x) - 1; /* x = 2^b */
      mpfr_init2 (tmp, MPFR_PREC (y) + BITS_PER_MP_LIMB);
      inexact = mpfr_mul_si (tmp, y, b, GMP_RNDN); /* exact */
      MPFR_ASSERTD (inexact == 0);
      inexact = mpfr_exp2 (z, tmp, rnd_mode);
      mpfr_clear (tmp);
      return inexact;
    }

  MPFR_SAVE_EXPO_MARK (expo);

  /* General case */
  {
    /* Declaration of the intermediary variable */
    mpfr_t t;
    int check_exact_case = 0;
    /* Declaration of the size variable */
    mp_prec_t Nz = MPFR_PREC(z);               /* target precision */
    mp_prec_t Nt;                              /* working precision */
    mp_exp_t err, exp_te;                      /* error */
    MPFR_ZIV_DECL (ziv_loop);

    /* compute the precision of intermediary variable */
    /* the optimal number of bits : see algorithms.tex */
    Nt = Nz + 5 + MPFR_INT_CEIL_LOG2 (Nz);

    /* initialise of intermediary variable */
    mpfr_init2 (t, Nt);

    MPFR_ZIV_INIT (ziv_loop, Nt);
    for (;;)
      {
        /* compute exp(y*ln(x)) */
        mpfr_log (t, x, GMP_RNDU);               /* ln(x) */
        mpfr_mul (t, y, t, GMP_RNDU);            /* y*ln(x) */
        exp_te = MPFR_GET_EXP (t);               /* FIXME: May overflow */
        mpfr_exp (t, t, GMP_RNDN);               /* exp(y*ln(x))*/
                                                 /* FIXME: May overflow */
        /* estimate of the error -- see pow function in algorithms.tex.
           The error on t is at most 1/2 + 3*2^(exp_te+1) ulps, which is
           <= 2^(exp_te+3) for exp_te >= -1, and <= 2 ulps for exp_te <= -2 */
        err = (exp_te >= -1) ? Nt - (exp_te + 3) : Nt - 1;
        if (MPFR_LIKELY (MPFR_CAN_ROUND (t, err, Nz, rnd_mode)))
          {
            inexact = mpfr_set (z, t, rnd_mode);
            break;
          }

        /* check exact power */
        if (check_exact_case == 0)
          {
            if (mpfr_pow_is_exact (z, x, y, rnd_mode, &inexact))
              break;
            check_exact_case = 1;
          }

        /* reactualisation of the precision */
        MPFR_ZIV_NEXT (ziv_loop, Nt);
        mpfr_set_prec (t, Nt);
      }
    MPFR_ZIV_FREE (ziv_loop);

    mpfr_clear (t);
  }

  MPFR_SAVE_EXPO_FREE (expo);
  return mpfr_check_range (z, inexact, rnd_mode);
}