summaryrefslogtreecommitdiff
path: root/pow_ui.c
blob: 91f2be7ec15d2919624ab8607dc7d0f633263359 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
/* mpfr_pow_ui-- compute the power of a floating-point
                                  by a machine integer

Copyright 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.

This file is part of the MPFR Library.

The MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or (at your
option) any later version.

The MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
License for more details.

You should have received a copy of the GNU Lesser General Public License
along with the MPFR Library; see the file COPYING.LIB.  If not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
MA 02111-1307, USA. */

#include "mpfr-impl.h"

/* sets x to y^n, and return 0 if exact, non-zero otherwise */
int
mpfr_pow_ui (mpfr_ptr x, mpfr_srcptr y, unsigned long int n, mp_rnd_t rnd)
{
  unsigned long m;
  mpfr_t res;
  mp_prec_t prec, err;
  int inexact;
  mp_rnd_t rnd1;
  MPFR_SAVE_EXPO_DECL (expo);

  if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (y)))
    {
      if (MPFR_IS_NAN (y))
	{
	  MPFR_SET_NAN (x);
	  MPFR_RET_NAN;
	}
      else if (n == 0) /* y^0 = 1 for any y except NAN */
	{
	  /* The return mpfr_set_ui is important as 1 isn't necessarily
	     in the exponent range. */
	  return mpfr_set_ui (x, 1, rnd);
	}
      else if (MPFR_IS_INF (y))
	{
	  /* Inf^n = Inf, (-Inf)^n = Inf for n even, -Inf for n odd */
	  if ((MPFR_IS_NEG (y)) && ((n & 1) == 1))
	    MPFR_SET_NEG (x);
	  else
	    MPFR_SET_POS (x);
	  MPFR_SET_INF (x);
	  MPFR_RET (0);
	}
      else /* y is zero */
	{
          MPFR_ASSERTD (MPFR_IS_ZERO (y));
          /* 0^n = 0 for any n */
	  MPFR_SET_ZERO (x);
	  MPFR_RET (0);
	}
    }
  else if (MPFR_UNLIKELY (n <= 2))
    { 
      if (n < 1)
	/* y^0 = 1 for any y */
	return mpfr_set_ui (x, 1, rnd);
      else if (n == 1)
	/* y^1 = y */
	return mpfr_set (x, y, rnd);	
      else
	/* y^2 = sqr(y) */
	return mpfr_sqr (x, y, rnd);
    }
  /* MPFR_CLEAR_FLAGS useless due to mpfr_set */

  MPFR_SAVE_EXPO_MARK (expo);

  prec = MPFR_PREC (x);
  mpfr_init2 (res, prec + 9);

  rnd1 = MPFR_IS_POS (y) ? GMP_RNDU : GMP_RNDD; /* away */

  do
    {
      int i;

      prec += 3;
      for (m = n, i = 0; m; i++, m >>= 1)
        prec++;
      /* now 2^(i-1) <= n < 2^i */
      mpfr_set_prec (res, prec);
      err = prec <= (mpfr_prec_t) i ? 0 : prec - (mpfr_prec_t) i;
      MPFR_ASSERTD (i >= 1);
      /* First step: compute square from y */
      inexact = mpfr_sqr (res, y, GMP_RNDU);
      if (n & (1UL << (i-2)))
	inexact |= mpfr_mul (res, res, y, rnd1);
      for (i -= 3; i >= 0; i--)
        {
          inexact |= mpfr_sqr (res, res, GMP_RNDU);
          if (n & (1UL << i))
            inexact |= mpfr_mul (res, res, y, rnd1);
        }

      /* Check Overflow (can't use MPFR_GET_EXP since there can be an INF )*/
      if (MPFR_UNLIKELY (MPFR_IS_INF (res) 
			 || MPFR_EXP (res) >= __gmpfr_emax))
	{
          mpfr_clear (res);
          MPFR_SAVE_EXPO_FREE (expo);
          return mpfr_set_overflow (x, rnd, 
				    (n % 2) ? MPFR_SIGN (y) : MPFR_SIGN_POS);
	}
      /* Check Underflow (can't use MPFR_GET_EXP since there can be a ZERO )*/
      if (MPFR_UNLIKELY (MPFR_IS_ZERO (res)
			 || MPFR_EXP (res) <= __gmpfr_emin))
        {
          mpfr_clear (res);
	  MPFR_SAVE_EXPO_FREE (expo);
          return mpfr_set_underflow (x, rnd, 
				     (n % 2) ? MPFR_SIGN(y) : MPFR_SIGN_POS);
        }
    }
  while (inexact && !mpfr_can_round (res, err, GMP_RNDN, GMP_RNDZ,
                                     MPFR_PREC(x) + (rnd == GMP_RNDN)));

  inexact = mpfr_set (x, res, rnd);
  mpfr_clear (res);
  MPFR_SAVE_EXPO_FREE (expo);
  return mpfr_check_range (x, inexact, rnd);
}