1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
|
/* mpfr_pow_ui-- compute the power of a floating-point
by a machine integer
Copyright 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
This file is part of the MPFR Library.
The MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or (at your
option) any later version.
The MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the MPFR Library; see the file COPYING.LIB. If not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
MA 02111-1307, USA. */
#include "gmp.h"
#include "gmp-impl.h"
#include "mpfr.h"
#include "mpfr-impl.h"
/* sets x to y^n, and return 0 if exact, non-zero otherwise */
int
mpfr_pow_ui (mpfr_ptr x, mpfr_srcptr y, unsigned long int n, mp_rnd_t rnd)
{
unsigned long m;
mpfr_t res;
mp_prec_t prec, err;
int inexact;
mp_rnd_t rnd1;
if (MPFR_UNLIKELY( MPFR_IS_SINGULAR(y) ))
{
if (MPFR_IS_NAN(y))
{
MPFR_SET_NAN(x);
MPFR_RET_NAN;
}
else if (n == 0) /* y^0 = 1 for any y */
{
/* The return mpfr_set_ui is important as 1 isn't necessarily
in the exponent range. */
return mpfr_set_ui (x, 1, rnd);
}
else if (MPFR_IS_INF(y))
{
/* Inf^n = Inf, (-Inf)^n = Inf for n even, -Inf for n odd */
if ((MPFR_IS_NEG(y)) && ((n & 1) == 1))
MPFR_SET_NEG(x);
else
MPFR_SET_POS(x);
MPFR_SET_INF(x);
MPFR_RET(0);
}
else if (MPFR_IS_ZERO(y)) /* 0^n = 0 for any n */
{
MPFR_SET_ZERO(x);
MPFR_RET(0);
}
else
MPFR_ASSERTN(1);
}
else if (MPFR_UNLIKELY( n <= 1))
{
if (n == 0)
/* y^0 = 1 for any y */
return mpfr_set_ui (x, 1, rnd);
MPFR_ASSERTD(n==1);
/* y^1 = y */
return mpfr_set(x, y, rnd);
}
mpfr_save_emin_emax ();
mpfr_init (res);
prec = MPFR_PREC(x);
rnd1 = (MPFR_IS_POS(y)) ? GMP_RNDU : GMP_RNDD; /* away */
do
{
int i;
prec += 3;
for (m = n, i = 0; m; i++, m >>= 1, prec++)
;
mpfr_set_prec (res, prec);
inexact = mpfr_set (res, y, rnd1);
err = prec <= i ? 0 : prec - i;
MPFR_ASSERTD (i >= 1);
/* now 2^(i-1) <= n < 2^i */
for (i -= 2; i >= 0; i--)
{
if (mpfr_mul (res, res, res, GMP_RNDU))
inexact = 1;
if (n & (1UL << i))
if (mpfr_mul (res, res, y, rnd1))
inexact = 1;
}
/* FIXME: infinity and 0 should be checked too. */
MPFR_ASSERTN (MPFR_IS_FP (res));
MPFR_ASSERTN (MPFR_NOTZERO (res));
/* check underflow */
if (MPFR_UNLIKELY (MPFR_GET_EXP (res) <= __gmpfr_emin))
{
mpfr_clear (res);
mpfr_restore_emin_emax ();
return mpfr_set_underflow (x, rnd, (n % 2) ? MPFR_SIGN(y) : 1);
}
}
while (inexact && !mpfr_can_round (res, err, GMP_RNDN, GMP_RNDZ,
MPFR_PREC(x) + (rnd == GMP_RNDN)));
inexact = mpfr_set (x, res, rnd);
mpfr_clear (res);
mpfr_restore_emin_emax ();
return mpfr_check_range (x, inexact, rnd);
}
|