1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
|
/* mpfr_sin -- sine of a floating-point number
Copyright 2001, 2002 Free Software Foundation, Inc.
This file is part of the MPFR Library.
The MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or (at your
option) any later version.
The MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the MPFR Library; see the file COPYING.LIB. If not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
MA 02111-1307, USA. */
#include "gmp.h"
#include "gmp-impl.h"
#include "mpfr.h"
#include "mpfr-impl.h"
/* determine the sign of sin(x) using argument reduction.
Assumes x is not an exact multiple of Pi (this excludes x=0). */
static int
mpfr_sin_sign (mpfr_srcptr x)
{
mpfr_t c, k;
mp_exp_t K;
int sign = 0;
mp_prec_t m;
mpfr_srcptr y;
m = MPFR_PREC(x);
mpfr_init2 (c, 2);
mpfr_init2 (k, 2);
do
{
m += BITS_PER_MP_LIMB;
mpfr_set_prec (c, m);
mpfr_set_prec (k, m);
/* first determine round(x/(2*Pi)): does not have to be exact since
the result is an integer */
mpfr_const_pi (c, GMP_RNDN); /* err <= ulp(c) = 2^(2-m) */
mpfr_div (k, x, c, GMP_RNDN);
MPFR_EXP(k) --; /* x/(2Pi) = 1/2*(x/Pi) */
mpfr_rint (k, k, GMP_RNDN);
if (MPFR_NOTZERO(k))
{
K = MPFR_EXP(k); /* k is an integer, thus K >= 1 */
mpfr_mul (k, k, c, GMP_RNDN); /* err <= 2^(K+3-m) */
MPFR_EXP(k) ++;
mpfr_sub (k, x, k, GMP_RNDN); /* err<=2^(4-m)+2^(K+3-m)<=2^(K+4-m) */
y = k;
}
else
{
K = 1;
y = x;
}
if (mpfr_cmp (y, c) >= 0)
{
mpfr_sub (k, y, c, GMP_RNDN); /* err <= 2^(2-m)+2^(K+4-m)+2^(2-m)
= 2^(3-m) + 2^(K+4-m) */
y = k;
}
}
while (MPFR_IS_ZERO(y) || (MPFR_EXP(y) < K + 5 - (mp_exp_t) m));
sign = MPFR_SIGN(y);
mpfr_clear (k);
mpfr_clear (c);
return sign;
}
int
mpfr_sin (mpfr_ptr y, mpfr_srcptr x, mp_rnd_t rnd_mode)
{
int precy, m, ok, e, inexact, sign;
mpfr_t c;
if (MPFR_IS_NAN(x) || MPFR_IS_INF(x))
{
MPFR_SET_NAN(y);
MPFR_RET_NAN;
}
if (MPFR_IS_ZERO(x))
{
MPFR_CLEAR_FLAGS(y);
MPFR_SET_ZERO(y);
MPFR_SET_SAME_SIGN(y, x);
MPFR_RET(0);
}
precy = MPFR_PREC(y);
m = precy + __gmpfr_ceil_log2 ((double) precy) + MAX(0,MPFR_EXP(x)) + 13;
sign = mpfr_sin_sign (x);
mpfr_init2 (c, m);
do
{
mpfr_cos (c, x, GMP_RNDZ);
mpfr_mul (c, c, c, GMP_RNDU);
mpfr_ui_sub (c, 1, c, GMP_RNDN);
e = 2 + (-MPFR_EXP(c)) / 2;
mpfr_sqrt (c, c, GMP_RNDN);
if (sign < 0)
mpfr_neg (c, c, GMP_RNDN);
/* the absolute error on c is at most 2^(e-m) = 2^(EXP(c)-err) */
e = MPFR_EXP(c) + m - e;
ok = (e >= 0) && mpfr_can_round (c, e, GMP_RNDN, rnd_mode, precy);
if (ok == 0)
{
m += BITS_PER_MP_LIMB;
mpfr_set_prec (c, m);
}
}
while (!ok);
inexact = mpfr_set (y, c, rnd_mode);
mpfr_clear (c);
return inexact; /* inexact */
}
|