summaryrefslogtreecommitdiff
path: root/sin_cos.c
blob: 3bf90deee215e2c4b9d198a9b087c63f67a6804b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
/* mpfr_sin_cos -- sine and cosine of a floating-point number

Copyright 2002, 2003, 2004 Free Software Foundation, Inc.

This file is part of the MPFR Library.

The MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or (at your
option) any later version.

The MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
License for more details.

You should have received a copy of the GNU Lesser General Public License
along with the MPFR Library; see the file COPYING.LIB.  If not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
MA 02111-1307, USA. */

#define MPFR_NEED_LONGLONG_H
#include "mpfr-impl.h"

/* (y, z) <- (sin(x), cos(x)), return value is 0 iff both results are exact */
int 
mpfr_sin_cos (mpfr_ptr y, mpfr_ptr z, mpfr_srcptr x, mp_rnd_t rnd_mode) 
{
  int prec, m, ok, e, inexact, neg;
  mpfr_t c, k;

  if (MPFR_UNLIKELY( MPFR_IS_SINGULAR(x) ))
    {
      if (MPFR_IS_NAN(x) || MPFR_IS_INF(x))
	{
	  MPFR_SET_NAN(y);
	  MPFR_SET_NAN(z);
	  MPFR_RET_NAN;
	}
      else /* x is zero */
	{
          MPFR_ASSERTD(MPFR_IS_ZERO(x));
	  MPFR_SET_ZERO(y);
	  MPFR_SET_SAME_SIGN(y, x);
	  mpfr_set_ui (z, 1, GMP_RNDN);
	  MPFR_RET(0);
	}
    }
  /* MPFR_CLEAR_FLAGS is useless since we use mpfr_set to set y and z */

  prec = MAX(MPFR_PREC(y), MPFR_PREC(z)); 
  m = prec + MPFR_INT_CEIL_LOG2 (prec) + MAX (MPFR_GET_EXP (x), 0) + 13;

  mpfr_init2 (c, m);
  mpfr_init2 (k, m);

  /* first determine sign */
  mpfr_const_pi (c, GMP_RNDN);
  mpfr_mul_2ui (c, c, 1, GMP_RNDN); /* 2*Pi */
  mpfr_div (k, x, c, GMP_RNDN);      /* x/(2*Pi) */
  mpfr_floor (k, k);                 /* floor(x/(2*Pi)) */
  mpfr_mul (c, k, c, GMP_RNDN);
  mpfr_sub (k, x, c, GMP_RNDN);      /* 0 <= k < 2*Pi */
  mpfr_const_pi (c, GMP_RNDN); /* cached */
  neg = mpfr_cmp (k, c) > 0;
  mpfr_clear (k);

  do
    {
      mpfr_cos (c, x, GMP_RNDZ);
      if ((ok = mpfr_can_round (c, m, GMP_RNDZ, rnd_mode, MPFR_PREC(z))))
        {
          inexact = mpfr_set (z, c, rnd_mode);
          mpfr_mul (c, c, c, GMP_RNDU);
          mpfr_ui_sub (c, 1, c, GMP_RNDN);
          e = 2 + (- MPFR_GET_EXP (c)) / 2;
          mpfr_sqrt (c, c, GMP_RNDN);
          if (neg)
            mpfr_neg (c, c, GMP_RNDN);

          /* the absolute error on c is at most 2^(e-m) = 2^(EXP(c)-err) */
          e = MPFR_GET_EXP (c) + m - e;
          ok = (e >= 0) && mpfr_can_round (c, e, GMP_RNDN, rnd_mode,
                                           MPFR_PREC(y));
        }

      if (ok == 0)
	{
	  m += MPFR_INT_CEIL_LOG2 (m);
	  mpfr_set_prec (c, m);
	}
    }
  while (ok == 0);

  inexact = mpfr_set (y, c, rnd_mode) || inexact;

  mpfr_clear (c);

  return inexact; /* inexact */
}