summaryrefslogtreecommitdiff
path: root/sqrt.c
blob: 1c27a58d9c5b0f14902c129126cbcb57724969ba (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
/* mpfr_sqrt -- square root of a floating-point number

Copyright (C) 1999 Free Software Foundation.

This file is part of the MPFR Library.

The MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Library General Public License as published by
the Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

The MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Library General Public
License for more details.

You should have received a copy of the GNU Library General Public License
along with the MPFR Library; see the file COPYING.LIB.  If not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
MA 02111-1307, USA. */

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include "gmp.h"
#include "mpfr.h"
#include "gmp-impl.h"

/* #define DEBUG */

int
#if __STDC__
mpfr_sqrt (mpfr_ptr r, mpfr_srcptr u, mp_rnd_t rnd_mode)
#else
mpfr_sqrt (r, u, rnd_mode)
     mpfr_ptr r;
     mpfr_srcptr u;
     mp_rnd_t rnd_mode;
#endif
{
  mp_ptr up, rp, tmp, remp;
  mp_size_t usize, rrsize;
  mp_size_t rsize;
  mp_size_t prec, err;
  mp_limb_t q_limb;
  long rw, nw, k; 
  int exact = 0, t;
  unsigned long cc = 0; 
  char can_round = 0; 
  TMP_DECL (marker); TMP_DECL(marker0); 

  if (MPFR_IS_NAN(u) || MPFR_SIGN(u) == -1) {
    MPFR_SET_NAN(r);
    return 1;
  }

  if (MPFR_SIGN(r) != 1) { MPFR_CHANGE_SIGN(r); }
  if (MPFR_IS_INF(u)) 
    { 
      MPFR_SET_INF(r);
      return 1;
    }

  MPFR_CLEAR_FLAGS (r);

  prec = MPFR_PREC(r);

  if (!MPFR_NOTZERO(u))
    {
      MPFR_EXP(r) = 0;
      rsize = (prec-1)/BITS_PER_MP_LIMB + 1;
      MPN_ZERO(MPFR_MANT(r), rsize);
      return 0;
    }

  up = MPFR_MANT(u);

  usize = (MPFR_PREC(u) - 1)/BITS_PER_MP_LIMB + 1; 

#ifdef DEBUG
      printf("Entering square root : "); 
      for(k = usize - 1; k >= 0; k--) { printf("%lu ", up[k]); }
      printf(".\n"); 
#endif

  /* Compare the mantissas */
  
  rsize = ((MPFR_PREC(r) + 2 + (MPFR_EXP(u) & 1))/BITS_PER_MP_LIMB + 1) << 1; 
  rrsize = (MPFR_PREC(r) + 2 + (MPFR_EXP(u) & 1))/BITS_PER_MP_LIMB + 1;
  /* One extra bit is needed in order to get the square root with enough
     precision ; take one extra bit for rrsize in order to solve more 
     easily the problem of rounding to nearest.
     Need to have 2*rrsize = rsize...
     Take one extra bit if the exponent of u is odd since we shall have
     to shift then.
  */

  TMP_MARK(marker0); 
  if (MPFR_EXP(u) & 1) /* Shift u one bit to the right */
    {
      if (MPFR_PREC(u) & (BITS_PER_MP_LIMB - 1))
	{
	  up = TMP_ALLOC(usize*BYTES_PER_MP_LIMB);
	  mpn_rshift(up, MPFR_MANT(u), usize, 1); 
	}
      else
	{
	  up = TMP_ALLOC((usize + 1)*BYTES_PER_MP_LIMB);
	  if (mpn_rshift(up + 1, MPFR_MANT(u), usize, 1))
	    up [0] = ((mp_limb_t) 1) << (BITS_PER_MP_LIMB - 1); 
	  else up[0] = 0; 
	  usize++; 
	}
    }

  MPFR_EXP(r) = ((MPFR_EXP(u) + (MPFR_EXP(u) & 1)) / 2) ;  
  
  do
    {
      TMP_MARK (marker);

      err = rsize*BITS_PER_MP_LIMB; 
      if (rsize < usize) { err--; }
      if (err > rrsize * BITS_PER_MP_LIMB) 
	{ err = rrsize * BITS_PER_MP_LIMB; }
      
      tmp = (mp_ptr) TMP_ALLOC (rsize * BYTES_PER_MP_LIMB);  
      rp = (mp_ptr) TMP_ALLOC (rrsize * BYTES_PER_MP_LIMB); 
      remp = (mp_ptr) TMP_ALLOC (rsize * BYTES_PER_MP_LIMB); 

      if (usize >= rsize) { 
	MPN_COPY (tmp, up + usize - rsize, rsize);
      }
      else { 
	MPN_COPY (tmp + rsize - usize, up, usize);
	MPN_ZERO (tmp, rsize - usize); 
      }

      /* Do the real job */
 
#ifdef DEBUG
      printf("Taking the sqrt of : "); 
      for(k = rsize - 1; k >= 0; k--) { 
	printf("+%lu*2^%lu",tmp[k],k*BITS_PER_MP_LIMB); }
      printf(".\n"); 
#endif

      q_limb = mpn_sqrtrem_new (rp, remp, tmp, rsize);

#ifdef DEBUG
      printf("The result is : \n"); 
      printf("sqrt : "); 
      for(k = rrsize - 1; k >= 0; k--) { printf("%lu ", rp[k]); }
      printf("(q_limb = %lu)\n", q_limb); 
#endif
      
      can_round = (mpfr_can_round_raw(rp, rrsize, 1, err, 
				      GMP_RNDZ, rnd_mode, MPFR_PREC(r))); 

      /* If we used all the limbs of both the dividend and the divisor, 
	 then we have the correct RNDZ rounding */

      if (!can_round && (rsize < 2*usize)) 
	{ 
#ifdef DEBUG
	  printf("Increasing the precision.\n"); 
#endif
	  TMP_FREE(marker); 
	}
    }
  while (!can_round && (rsize < 2*usize) 
	 && (rsize += 2) && (rrsize ++)); 


  /* This part may be deplaced upper to avoid a few mpfr_can_round_raw */
  /* when the square root is exact. It is however very unprobable that */
  /* it would improve the behaviour of the present code on average.    */

  if (!q_limb) /* possibly exact */
    {
      /* if we have taken into account the whole of up */
      for (k = usize - rsize - 1; k >= 0; k ++)
	if (up[k]) break; 
      
      if (k < 0) { exact = 1; goto fin; }
    }

  if (can_round) 
    {
      cc = mpfr_round_raw(rp, rp, err, 0, MPFR_PREC(r), rnd_mode);  
      rrsize = (MPFR_PREC(r) - 1)/BITS_PER_MP_LIMB + 1; 
    }
  else
    /* Use the return value of sqrtrem to decide of the rounding         */
    /* Note that at this point the sqrt has been computed                */
    /* EXACTLY. If rounding = GMP_RNDZ, do nothing [comes from           */
    /* the fact that the exact square root can end with a bunch of ones, */
    /* and in that case we indeed cannot round if we do not know that    */
    /* the computation was exact.                                        */
    switch (rnd_mode)
      {
      case GMP_RNDZ : 
      case GMP_RNDD : break; 

      case GMP_RNDN : 
	/* Not in the situation ...0 111111 */
	rw = (MPFR_PREC(r) + 1) & (BITS_PER_MP_LIMB - 1);
	if (rw) { rw = BITS_PER_MP_LIMB - rw; nw = 0; } else nw = 1; 
	if ((rp[nw] >> rw) & 1 &&                     /* Not 0111111111 */
	    (q_limb ||                                /* Nonzero remainder */
	    (rw ? (rp[nw] >> (rw + 1)) & 1 : 
	     (rp[nw] >> (BITS_PER_MP_LIMB - 1)) & 1))) /* or even rounding */ 
	  cc = mpn_add_1(rp + nw, rp + nw, rrsize, ((mp_limb_t)1) << rw); 
	break;
 
      case GMP_RNDU : 
	if (q_limb)
	  {
	    t = MPFR_PREC(r) & (BITS_PER_MP_LIMB - 1); 
	    if (t) 
	      {
		cc = mpn_add_1(rp, rp, rrsize, 1 << (BITS_PER_MP_LIMB - t)); 
	      }
	    else
	      cc = mpn_add_1 (rp, rp, rrsize, 1); 
	  }	      
      }

  if (cc) {
    mpn_rshift(rp, rp, rrsize, 1);
    rp[rrsize-1] |= (mp_limb_t) 1 << (BITS_PER_MP_LIMB-1);
    r->_mp_exp++; 
  }

 fin:
  rsize = rrsize; 
  rrsize = (MPFR_PREC(r) - 1)/BITS_PER_MP_LIMB + 1;  
  MPN_COPY(MPFR_MANT(r), rp + rsize - rrsize, rrsize); 

  if (MPFR_PREC(r) & (BITS_PER_MP_LIMB - 1))
    MPFR_MANT(r) [0] &= ~(((mp_limb_t)1 << (BITS_PER_MP_LIMB - 
				   (MPFR_PREC(r) & (BITS_PER_MP_LIMB - 1)))) - 1) ; 
  
  TMP_FREE (marker);
  TMP_FREE(marker0);
  return exact;
}