1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
|
/* mpfr_acosh -- inverse hyperbolic cosine
Copyright 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
Contributed by the Arenaire and Caramel projects, INRIA.
This file is part of the GNU MPFR Library.
The GNU MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The GNU MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
#define MPFR_NEED_LONGLONG_H
#include "mpfr-impl.h"
/* The computation of acosh is done by *
* acosh= ln(x + sqrt(x^2-1)) */
int
mpfr_acosh (mpfr_ptr y, mpfr_srcptr x , mpfr_rnd_t rnd_mode)
{
MPFR_SAVE_EXPO_DECL (expo);
int inexact;
int comp;
MPFR_LOG_FUNC (("x[%#R]=%R rnd=%d", x, x, rnd_mode),
("y[%#R]=%R inexact=%d", y, y, inexact));
/* Deal with special cases */
if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
{
/* Nan, or zero or -Inf */
if (MPFR_IS_INF (x) && MPFR_IS_POS (x))
{
MPFR_SET_INF (y);
MPFR_SET_POS (y);
MPFR_RET (0);
}
else /* Nan, or zero or -Inf */
{
MPFR_SET_NAN (y);
MPFR_RET_NAN;
}
}
comp = mpfr_cmp_ui (x, 1);
if (MPFR_UNLIKELY (comp < 0))
{
MPFR_SET_NAN (y);
MPFR_RET_NAN;
}
else if (MPFR_UNLIKELY (comp == 0))
{
MPFR_SET_ZERO (y); /* acosh(1) = 0 */
MPFR_SET_POS (y);
MPFR_RET (0);
}
MPFR_SAVE_EXPO_MARK (expo);
/* General case */
{
/* Declaration of the intermediary variables */
mpfr_t t;
/* Declaration of the size variables */
mpfr_prec_t Ny = MPFR_PREC(y); /* Precision of output variable */
mpfr_prec_t Nt; /* Precision of the intermediary variable */
mpfr_exp_t err, exp_te, d; /* Precision of error */
MPFR_ZIV_DECL (loop);
/* compute the precision of intermediary variable */
/* the optimal number of bits : see algorithms.tex */
Nt = Ny + 4 + MPFR_INT_CEIL_LOG2 (Ny);
/* initialization of intermediary variables */
mpfr_init2 (t, Nt);
/* First computation of acosh */
MPFR_ZIV_INIT (loop, Nt);
for (;;)
{
MPFR_BLOCK_DECL (flags);
/* compute acosh */
MPFR_BLOCK (flags, mpfr_mul (t, x, x, MPFR_RNDD)); /* x^2 */
if (MPFR_OVERFLOW (flags))
{
mpfr_t ln2;
mpfr_prec_t pln2;
/* As x is very large and the precision is not too large, we
assume that we obtain the same result by evaluating ln(2x).
We need to compute ln(x) + ln(2) as 2x can overflow. TODO:
write a proof and add an MPFR_ASSERTN. */
mpfr_log (t, x, MPFR_RNDN); /* err(log) < 1/2 ulp(t) */
pln2 = Nt - MPFR_PREC_MIN < MPFR_GET_EXP (t) ?
MPFR_PREC_MIN : Nt - MPFR_GET_EXP (t);
mpfr_init2 (ln2, pln2);
mpfr_const_log2 (ln2, MPFR_RNDN); /* err(ln2) < 1/2 ulp(t) */
mpfr_add (t, t, ln2, MPFR_RNDN); /* err <= 3/2 ulp(t) */
mpfr_clear (ln2);
err = 1;
}
else
{
exp_te = MPFR_GET_EXP (t);
mpfr_sub_ui (t, t, 1, MPFR_RNDD); /* x^2-1 */
if (MPFR_UNLIKELY (MPFR_IS_ZERO (t)))
{
/* This means that x is very close to 1: x = 1 + t with
t < 2^(-Nt). We have: acosh(x) = sqrt(2t) (1 - eps(t))
with 0 < eps(t) < t / 12. */
mpfr_sub_ui (t, x, 1, MPFR_RNDD); /* t = x - 1 */
mpfr_mul_2ui (t, t, 1, MPFR_RNDN); /* 2t */
mpfr_sqrt (t, t, MPFR_RNDN); /* sqrt(2t) */
err = 1;
}
else
{
d = exp_te - MPFR_GET_EXP (t);
mpfr_sqrt (t, t, MPFR_RNDN); /* sqrt(x^2-1) */
mpfr_add (t, t, x, MPFR_RNDN); /* sqrt(x^2-1)+x */
mpfr_log (t, t, MPFR_RNDN); /* ln(sqrt(x^2-1)+x) */
/* error estimate -- see algorithms.tex */
err = 3 + MAX (1, d) - MPFR_GET_EXP (t);
/* error is bounded by 1/2 + 2^err <= 2^(max(0,1+err)) */
err = MAX (0, 1 + err);
}
}
if (MPFR_LIKELY (MPFR_CAN_ROUND (t, Nt - err, Ny, rnd_mode)))
break;
/* reactualisation of the precision */
MPFR_ZIV_NEXT (loop, Nt);
mpfr_set_prec (t, Nt);
}
MPFR_ZIV_FREE (loop);
inexact = mpfr_set (y, t, rnd_mode);
mpfr_clear (t);
}
MPFR_SAVE_EXPO_FREE (expo);
return mpfr_check_range (y, inexact, rnd_mode);
}
|