1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
|
/* mpfr_cos -- cosine of a floating-point number
Copyright 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
Contributed by the Arenaire and Caramel projects, INRIA.
This file is part of the GNU MPFR Library.
The GNU MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The GNU MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
#define MPFR_NEED_LONGLONG_H
#include "mpfr-impl.h"
static int
mpfr_cos_fast (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd_mode)
{
int inex;
inex = mpfr_sincos_fast (NULL, y, x, rnd_mode);
inex = inex >> 2; /* 0: exact, 1: rounded up, 2: rounded down */
return (inex == 2) ? -1 : inex;
}
/* f <- 1 - r/2! + r^2/4! + ... + (-1)^l r^l/(2l)! + ...
Assumes |r| < 1/2, and f, r have the same precision.
Returns e such that the error on f is bounded by 2^e ulps.
*/
static int
mpfr_cos2_aux (mpfr_ptr f, mpfr_srcptr r)
{
mpz_t x, t, s;
mpfr_exp_t ex, l, m;
mpfr_prec_t p, q;
unsigned long i, maxi, imax;
MPFR_ASSERTD(mpfr_get_exp (r) <= -1);
/* compute minimal i such that i*(i+1) does not fit in an unsigned long,
assuming that there are no padding bits. */
maxi = 1UL << (CHAR_BIT * sizeof(unsigned long) / 2);
if (maxi * (maxi / 2) == 0) /* test checked at compile time */
{
/* can occur only when there are padding bits. */
/* maxi * (maxi-1) is representable iff maxi * (maxi / 2) != 0 */
do
maxi /= 2;
while (maxi * (maxi / 2) == 0);
}
mpz_init (x);
mpz_init (s);
mpz_init (t);
ex = mpfr_get_z_2exp (x, r); /* r = x*2^ex */
/* remove trailing zeroes */
l = mpz_scan1 (x, 0);
ex += l;
mpz_fdiv_q_2exp (x, x, l);
/* since |r| < 1, r = x*2^ex, and x is an integer, necessarily ex < 0 */
p = mpfr_get_prec (f); /* same than r */
/* bound for number of iterations */
imax = p / (-mpfr_get_exp (r));
imax += (imax == 0);
q = 2 * MPFR_INT_CEIL_LOG2(imax) + 4; /* bound for (3l)^2 */
mpz_set_ui (s, 1); /* initialize sum with 1 */
mpz_mul_2exp (s, s, p + q); /* scale all values by 2^(p+q) */
mpz_set (t, s); /* invariant: t is previous term */
for (i = 1; (m = mpz_sizeinbase (t, 2)) >= q; i += 2)
{
/* adjust precision of x to that of t */
l = mpz_sizeinbase (x, 2);
if (l > m)
{
l -= m;
mpz_fdiv_q_2exp (x, x, l);
ex += l;
}
/* multiply t by r */
mpz_mul (t, t, x);
mpz_fdiv_q_2exp (t, t, -ex);
/* divide t by i*(i+1) */
if (i < maxi)
mpz_fdiv_q_ui (t, t, i * (i + 1));
else
{
mpz_fdiv_q_ui (t, t, i);
mpz_fdiv_q_ui (t, t, i + 1);
}
/* if m is the (current) number of bits of t, we can consider that
all operations on t so far had precision >= m, so we can prove
by induction that the relative error on t is of the form
(1+u)^(3l)-1, where |u| <= 2^(-m), and l=(i+1)/2 is the # of loops.
Since |(1+x^2)^(1/x) - 1| <= 4x/3 for |x| <= 1/2,
for |u| <= 1/(3l)^2, the absolute error is bounded by
4/3*(3l)*2^(-m)*t <= 4*l since |t| < 2^m.
Therefore the error on s is bounded by 2*l*(l+1). */
/* add or subtract to s */
if (i % 4 == 1)
mpz_sub (s, s, t);
else
mpz_add (s, s, t);
}
mpfr_set_z (f, s, MPFR_RNDN);
mpfr_div_2ui (f, f, p + q, MPFR_RNDN);
mpz_clear (x);
mpz_clear (s);
mpz_clear (t);
l = (i - 1) / 2; /* number of iterations */
return 2 * MPFR_INT_CEIL_LOG2 (l + 1) + 1; /* bound is 2l(l+1) */
}
int
mpfr_cos (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd_mode)
{
mpfr_prec_t K0, K, precy, m, k, l;
int inexact, reduce = 0;
mpfr_t r, s, xr, c;
mpfr_exp_t exps, cancel = 0, expx;
MPFR_ZIV_DECL (loop);
MPFR_SAVE_EXPO_DECL (expo);
MPFR_GROUP_DECL (group);
MPFR_LOG_FUNC (("x[%#R]=%R rnd=%d", x, x, rnd_mode),
("y[%#R]=%R inexact=%d", y, y, inexact));
if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
{
if (MPFR_IS_NAN (x) || MPFR_IS_INF (x))
{
MPFR_SET_NAN (y);
MPFR_RET_NAN;
}
else
{
MPFR_ASSERTD (MPFR_IS_ZERO (x));
return mpfr_set_ui (y, 1, rnd_mode);
}
}
MPFR_SAVE_EXPO_MARK (expo);
/* cos(x) = 1-x^2/2 + ..., so error < 2^(2*EXP(x)-1) */
expx = MPFR_GET_EXP (x);
MPFR_SMALL_INPUT_AFTER_SAVE_EXPO (y, __gmpfr_one, -2 * expx,
1, 0, rnd_mode, expo, {});
/* Compute initial precision */
precy = MPFR_PREC (y);
if (precy >= MPFR_SINCOS_THRESHOLD)
{
MPFR_SAVE_EXPO_FREE (expo);
return mpfr_cos_fast (y, x, rnd_mode);
}
K0 = __gmpfr_isqrt (precy / 3);
m = precy + 2 * MPFR_INT_CEIL_LOG2 (precy) + 2 * K0;
if (expx >= 3)
{
reduce = 1;
/* As expx + m - 1 will silently be converted into mpfr_prec_t
in the mpfr_init2 call, the assert below may be useful to
avoid undefined behavior. */
MPFR_ASSERTN (expx + m - 1 <= MPFR_PREC_MAX);
mpfr_init2 (c, expx + m - 1);
mpfr_init2 (xr, m);
}
MPFR_GROUP_INIT_2 (group, m, r, s);
MPFR_ZIV_INIT (loop, m);
for (;;)
{
/* If |x| >= 4, first reduce x cmod (2*Pi) into xr, using mpfr_remainder:
let e = EXP(x) >= 3, and m the target precision:
(1) c <- 2*Pi [precision e+m-1, nearest]
(2) xr <- remainder (x, c) [precision m, nearest]
We have |c - 2*Pi| <= 1/2ulp(c) = 2^(3-e-m)
|xr - x - k c| <= 1/2ulp(xr) <= 2^(1-m)
|k| <= |x|/(2*Pi) <= 2^(e-2)
Thus |xr - x - 2kPi| <= |k| |c - 2Pi| + 2^(1-m) <= 2^(2-m).
It follows |cos(xr) - cos(x)| <= 2^(2-m). */
if (reduce)
{
mpfr_const_pi (c, MPFR_RNDN);
mpfr_mul_2ui (c, c, 1, MPFR_RNDN); /* 2Pi */
mpfr_remainder (xr, x, c, MPFR_RNDN);
if (MPFR_IS_ZERO(xr))
goto ziv_next;
/* now |xr| <= 4, thus r <= 16 below */
mpfr_mul (r, xr, xr, MPFR_RNDU); /* err <= 1 ulp */
}
else
mpfr_mul (r, x, x, MPFR_RNDU); /* err <= 1 ulp */
/* now |x| < 4 (or xr if reduce = 1), thus |r| <= 16 */
/* we need |r| < 1/2 for mpfr_cos2_aux, i.e., EXP(r) - 2K <= -1 */
K = K0 + 1 + MAX(0, MPFR_EXP(r)) / 2;
/* since K0 >= 0, if EXP(r) < 0, then K >= 1, thus EXP(r) - 2K <= -3;
otherwise if EXP(r) >= 0, then K >= 1/2 + EXP(r)/2, thus
EXP(r) - 2K <= -1 */
MPFR_SET_EXP (r, MPFR_GET_EXP (r) - 2 * K); /* Can't overflow! */
/* s <- 1 - r/2! + ... + (-1)^l r^l/(2l)! */
l = mpfr_cos2_aux (s, r);
/* l is the error bound in ulps on s */
MPFR_SET_ONE (r);
for (k = 0; k < K; k++)
{
mpfr_sqr (s, s, MPFR_RNDU); /* err <= 2*olderr */
MPFR_SET_EXP (s, MPFR_GET_EXP (s) + 1); /* Can't overflow */
mpfr_sub (s, s, r, MPFR_RNDN); /* err <= 4*olderr */
if (MPFR_IS_ZERO(s))
goto ziv_next;
MPFR_ASSERTD (MPFR_GET_EXP (s) <= 1);
}
/* The absolute error on s is bounded by (2l+1/3)*2^(2K-m)
2l+1/3 <= 2l+1.
If |x| >= 4, we need to add 2^(2-m) for the argument reduction
by 2Pi: if K = 0, this amounts to add 4 to 2l+1/3, i.e., to add
2 to l; if K >= 1, this amounts to add 1 to 2*l+1/3. */
l = 2 * l + 1;
if (reduce)
l += (K == 0) ? 4 : 1;
k = MPFR_INT_CEIL_LOG2 (l) + 2*K;
/* now the error is bounded by 2^(k-m) = 2^(EXP(s)-err) */
exps = MPFR_GET_EXP (s);
if (MPFR_LIKELY (MPFR_CAN_ROUND (s, exps + m - k, precy, rnd_mode)))
break;
if (MPFR_UNLIKELY (exps == 1))
/* s = 1 or -1, and except x=0 which was already checked above,
cos(x) cannot be 1 or -1, so we can round if the error is less
than 2^(-precy) for directed rounding, or 2^(-precy-1) for rounding
to nearest. */
{
if (m > k && (m - k >= precy + (rnd_mode == MPFR_RNDN)))
{
/* If round to nearest or away, result is s = 1 or -1,
otherwise it is round(nexttoward (s, 0)). However in order to
have the inexact flag correctly set below, we set |s| to
1 - 2^(-m) in all cases. */
mpfr_nexttozero (s);
break;
}
}
if (exps < cancel)
{
m += cancel - exps;
cancel = exps;
}
ziv_next:
MPFR_ZIV_NEXT (loop, m);
MPFR_GROUP_REPREC_2 (group, m, r, s);
if (reduce)
{
mpfr_set_prec (xr, m);
mpfr_set_prec (c, expx + m - 1);
}
}
MPFR_ZIV_FREE (loop);
inexact = mpfr_set (y, s, rnd_mode);
MPFR_GROUP_CLEAR (group);
if (reduce)
{
mpfr_clear (xr);
mpfr_clear (c);
}
MPFR_SAVE_EXPO_FREE (expo);
return mpfr_check_range (y, inexact, rnd_mode);
}
|