1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
|
/* mpfr_div_ui -- divide a floating-point number by a machine integer
Copyright 1999-2018 Free Software Foundation, Inc.
Contributed by the AriC and Caramba projects, INRIA.
This file is part of the GNU MPFR Library.
The GNU MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The GNU MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
#define MPFR_NEED_LONGLONG_H
#include "mpfr-impl.h"
/* returns 0 if result exact, non-zero otherwise */
#undef mpfr_div_ui
MPFR_HOT_FUNCTION_ATTR int
mpfr_div_ui (mpfr_ptr y, mpfr_srcptr x, unsigned long int u, mpfr_rnd_t rnd_mode)
{
long i;
int sh;
mp_size_t xn, yn, dif;
mp_limb_t *xp, *yp, *tmp, c, d;
mpfr_exp_t exp;
int inexact, nexttoinf;
int middle = 1; /* middle = 0 if the next bit after {yp, yn} is 1 and others are
zero, middle = -1 if the next bit after {yp, yn} is 0, and
middle = 1 if the next bit after {yp, yn} is 1, and next bits
are not all zero */
MPFR_TMP_DECL(marker);
MPFR_LOG_FUNC
(("x[%Pu]=%.*Rg u=%lu rnd=%d",
mpfr_get_prec(x), mpfr_log_prec, x, u, rnd_mode),
("y[%Pu]=%.*Rg inexact=%d",
mpfr_get_prec(y), mpfr_log_prec, y, inexact));
if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
{
if (MPFR_IS_NAN (x))
{
MPFR_SET_NAN (y);
MPFR_RET_NAN;
}
else if (MPFR_IS_INF (x))
{
MPFR_SET_INF (y);
MPFR_SET_SAME_SIGN (y, x);
MPFR_RET (0);
}
else
{
MPFR_ASSERTD (MPFR_IS_ZERO(x));
if (u == 0) /* 0/0 is NaN */
{
MPFR_SET_NAN(y);
MPFR_RET_NAN;
}
else
{
MPFR_SET_ZERO(y);
MPFR_SET_SAME_SIGN (y, x);
MPFR_RET(0);
}
}
}
else if (MPFR_UNLIKELY (u <= 1))
{
if (u < 1)
{
/* x/0 is Inf since x != 0*/
MPFR_SET_INF (y);
MPFR_SET_SAME_SIGN (y, x);
MPFR_SET_DIVBY0 ();
MPFR_RET (0);
}
else /* y = x/1 = x */
return mpfr_set (y, x, rnd_mode);
}
else if (MPFR_UNLIKELY (IS_POW2 (u)))
return mpfr_div_2si (y, x, MPFR_INT_CEIL_LOG2 (u), rnd_mode);
MPFR_SET_SAME_SIGN (y, x);
MPFR_TMP_MARK (marker);
xn = MPFR_LIMB_SIZE (x);
yn = MPFR_LIMB_SIZE (y);
xp = MPFR_MANT (x);
yp = MPFR_MANT (y);
exp = MPFR_GET_EXP (x);
dif = yn + 1 - xn;
/* we need to store yn+1 = xn + dif limbs of the quotient */
/* don't use tmp=yp since the mpn_lshift call below requires yp >= tmp+1 */
tmp = MPFR_TMP_LIMBS_ALLOC (yn + 1);
MPFR_STAT_STATIC_ASSERT (MPFR_LIMB_MAX >= ULONG_MAX);
if (dif >= 0)
c = mpn_divrem_1 (tmp, dif, xp, xn, u); /* used all the dividend */
else /* dif < 0 i.e. xn > yn, don't use the (-dif) low limbs from x */
c = mpn_divrem_1 (tmp, 0, xp - dif, yn + 1, u);
/* the quotient x/u is formed by {tmp, yn+1}
+ (c + {xp, dif}/B^dif) / u, where B = 2^GMP_NUMB_BITS */
inexact = (c != 0);
/* First pass in estimating next bit of the quotient, in case of RNDN *
* In case we just have the right number of bits (postpone this ?), *
* we need to check whether the remainder is more or less than half *
* the divisor. The test must be performed with a subtraction, so as *
* to prevent carries. */
if (MPFR_LIKELY (rnd_mode == MPFR_RNDN))
{
if (c < (mp_limb_t) u - c) /* We have u > c */
middle = -1;
else if (c > (mp_limb_t) u - c)
middle = 1;
else
middle = 0; /* exactly in the middle */
}
/* If we believe that we are right in the middle or exact, we should check
that we did not neglect any word of x (division large / 1 -> small). */
for (i = 0; (inexact == 0 || middle == 0) && i < -dif; i++)
if (xp[i])
inexact = middle = 1; /* larger than middle */
/*
If the high limb of the result is 0 (xp[xn-1] < u), remove it.
Otherwise, compute the left shift to be performed to normalize.
In the latter case, we discard some low bits computed. They
contain information useful for the rounding, hence the updating
of middle and inexact.
*/
if (tmp[yn] == 0)
{
MPN_COPY(yp, tmp, yn);
exp -= GMP_NUMB_BITS;
}
else
{
int shlz;
count_leading_zeros (shlz, tmp[yn]);
/* shift left to normalize */
if (MPFR_LIKELY (shlz != 0))
{
mp_limb_t w = tmp[0] << shlz;
mpn_lshift (yp, tmp + 1, yn, shlz);
yp[0] |= tmp[0] >> (GMP_NUMB_BITS - shlz);
/* now {yp, yn} is the approximate quotient, w is the next limb */
if (w > MPFR_LIMB_HIGHBIT)
{ middle = 1; }
else if (w < MPFR_LIMB_HIGHBIT)
{ middle = -1; }
else
{ middle = (c != 0); }
inexact = inexact || (w != 0);
exp -= shlz;
}
else
{ /* this happens only if u == 1 and xp[xn-1] >=
MPFR_LIMB_ONE << (GMP_NUMB_BITS-1). It might be better to
handle the u == 1 case separately?
*/
MPN_COPY (yp, tmp + 1, yn);
}
}
MPFR_UNSIGNED_MINUS_MODULO (sh, MPFR_PREC (y));
/* it remains sh bits in less significant limb of y */
d = yp[0] & MPFR_LIMB_MASK (sh);
yp[0] ^= d; /* set to zero lowest sh bits */
MPFR_TMP_FREE (marker);
if (MPFR_UNLIKELY (exp < __gmpfr_emin - 1))
return mpfr_underflow (y, rnd_mode == MPFR_RNDN ? MPFR_RNDZ : rnd_mode,
MPFR_SIGN (y));
if (MPFR_UNLIKELY (d == 0 && inexact == 0))
nexttoinf = 0; /* result is exact */
else
{
MPFR_UPDATE2_RND_MODE(rnd_mode, MPFR_SIGN (y));
switch (rnd_mode)
{
case MPFR_RNDZ:
case MPFR_RNDF:
inexact = - MPFR_INT_SIGN (y); /* result is inexact */
nexttoinf = 0;
break;
case MPFR_RNDA:
inexact = MPFR_INT_SIGN (y);
nexttoinf = 1;
break;
default: /* should be MPFR_RNDN */
MPFR_ASSERTD (rnd_mode == MPFR_RNDN);
/* We have one more significant bit in yn. */
if (sh && d < (MPFR_LIMB_ONE << (sh - 1)))
{
inexact = - MPFR_INT_SIGN (y);
nexttoinf = 0;
}
else if (sh && d > (MPFR_LIMB_ONE << (sh - 1)))
{
inexact = MPFR_INT_SIGN (y);
nexttoinf = 1;
}
else /* sh = 0 or d = 1 << (sh-1) */
{
/* The first case is "false" even rounding (significant bits
indicate even rounding, but the result is inexact, so up) ;
The second case is the case where middle should be used to
decide the direction of rounding (no further bit computed) ;
The third is the true even rounding:
(a) either sh > 0 and inexact = 0
(a) or sh = 0 and middle = 0
*/
if ((sh && inexact) || (!sh && middle > 0) ||
(((sh && !inexact) || (!sh && middle == 0))
&& (yp[0] & (MPFR_LIMB_ONE << sh))))
{
inexact = MPFR_INT_SIGN (y);
nexttoinf = 1;
}
else
{
inexact = - MPFR_INT_SIGN (y);
nexttoinf = 0;
}
}
}
}
if (nexttoinf &&
MPFR_UNLIKELY (mpn_add_1 (yp, yp, yn, MPFR_LIMB_ONE << sh)))
{
exp++;
yp[yn-1] = MPFR_LIMB_HIGHBIT;
}
/* Set the exponent. Warning! One may still have an underflow. */
MPFR_EXP (y) = exp;
return mpfr_check_range (y, inexact, rnd_mode);
}
|