summaryrefslogtreecommitdiff
path: root/src/eint.c
blob: cd9588e50647e70b198da01e611361ca58166ed0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
/* mpfr_eint, mpfr_eint1 -- the exponential integral

Copyright 2005-2017 Free Software Foundation, Inc.
Contributed by the AriC and Caramba projects, INRIA.

This file is part of the GNU MPFR Library.

The GNU MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

The GNU MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
License for more details.

You should have received a copy of the GNU Lesser General Public License
along with the GNU MPFR Library; see the file COPYING.LESSER.  If not, see
http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */

#define MPFR_NEED_LONGLONG_H
#include "mpfr-impl.h"

/* eint1(x) = -gamma - log(x) - sum((-1)^k*z^k/k/k!, k=1..infinity) for x > 0
            = - eint(-x) for x < 0
   where
   eint (x) = gamma + log(x) + sum(z^k/k/k!, k=1..infinity) for x > 0
   eint (x) is undefined for x < 0.
*/

/* Compute in y an approximation of sum(x^k/k/k!, k=1..infinity),
   and return e such that the absolute error is bound by 2^e ulp(y).
   Return PREC(y) when the truncated series does not converge.
*/
static mpfr_exp_t
mpfr_eint_aux (mpfr_t y, mpfr_srcptr x)
{
  mpfr_t eps; /* dynamic (absolute) error bound on t */
  mpfr_t erru, errs;
  mpz_t m, s, t, u;
  mpfr_exp_t e, sizeinbase;
  mpfr_prec_t w = MPFR_PREC(y);
  unsigned long k;
  MPFR_GROUP_DECL (group);

  /* for |x| <= 1, we have S := sum(x^k/k/k!, k=1..infinity) = x + R(x)
     where |R(x)| <= (x/2)^2/(1-|x|/2) <= 2*(x/2)^2
     thus |R(x)/x| <= |x|/2
     thus if |x| <= 2^(-PREC(y)) we have |S - o(x)| <= ulp(y) */

  if (MPFR_GET_EXP(x) <= - (mpfr_exp_t) w)
    {
      mpfr_set (y, x, MPFR_RNDN);
      return 0;
    }

  mpz_init (s); /* initializes to 0 */
  mpz_init (t);
  mpz_init (u);
  mpz_init (m);
  MPFR_GROUP_INIT_3 (group, 31, eps, erru, errs);
  e = mpfr_get_z_2exp (m, x); /* x = m * 2^e */
  MPFR_ASSERTD (mpz_sizeinbase (m, 2) == MPFR_PREC (x));
  if (MPFR_PREC (x) > w)
    {
      e += MPFR_PREC (x) - w;
      mpz_tdiv_q_2exp (m, m, MPFR_PREC (x) - w);
    }
  /* remove trailing zeroes from m: this will speed up much cases where
     x is a small integer divided by a power of 2 */
  k = mpz_scan1 (m, 0);
  mpz_tdiv_q_2exp (m, m, k);
  e += k;
  /* initialize t to 2^w */
  mpz_set_ui (t, 1);
  mpz_mul_2exp (t, t, w);
  mpfr_set_ui (eps, 0, MPFR_RNDN); /* eps[0] = 0 */
  mpfr_set_ui (errs, 0, MPFR_RNDN); /* maximal error on s */
  for (k = 1;; k++)
    {
      /* let t[k] = x^k/k/k!, and eps[k] be the absolute error on t[k]:
         since t[k] = trunc(t[k-1]*m*2^e/k), we have
         eps[k+1] <= 1 + eps[k-1]*|m|*2^e/k + |t[k-1]|*|m|*2^(1-w)*2^e/k
                  =  1 + (eps[k-1] + |t[k-1]|*2^(1-w))*|m|*2^e/k
                  = 1 + (eps[k-1]*2^(w-1) + |t[k-1]|)*2^(1-w)*|m|*2^e/k */
      mpfr_mul_2ui (eps, eps, w - 1, MPFR_RNDU);
      if (mpz_sgn (t) >= 0)
        mpfr_add_z (eps, eps, t, MPFR_RNDU);
      else
        mpfr_sub_z (eps, eps, t, MPFR_RNDU);
      MPFR_MPZ_SIZEINBASE2 (sizeinbase, m);
      mpfr_mul_2si (eps, eps, sizeinbase - (w - 1) + e, MPFR_RNDU);
      mpfr_div_ui (eps, eps, k, MPFR_RNDU);
      mpfr_add_ui (eps, eps, 1, MPFR_RNDU);
      mpz_mul (t, t, m);
      if (e < 0)
        mpz_tdiv_q_2exp (t, t, -e);
      else
        mpz_mul_2exp (t, t, e);
      mpz_tdiv_q_ui (t, t, k);
      mpz_tdiv_q_ui (u, t, k);
      mpz_add (s, s, u);
      /* the absolute error on u is <= 1 + eps[k]/k */
      mpfr_div_ui (erru, eps, k, MPFR_RNDU);
      mpfr_add_ui (erru, erru, 1, MPFR_RNDU);
      /* and that on s is the sum of all errors on u */
      mpfr_add (errs, errs, erru, MPFR_RNDU);
      /* we are done when t is smaller than errs */
      if (mpz_sgn (t) == 0)
        sizeinbase = 0;
      else
        MPFR_MPZ_SIZEINBASE2 (sizeinbase, t);
      if (sizeinbase < MPFR_GET_EXP (errs))
        break;
    }
  /* the truncation error is bounded by (|t|+eps)/k*(|x|/k + |x|^2/k^2 + ...)
     <= (|t|+eps)/k*|x|/(k-|x|) */
  mpz_abs (t, t);
  mpfr_add_z (eps, eps, t, MPFR_RNDU);
  mpfr_div_ui (eps, eps, k, MPFR_RNDU);
  mpfr_abs (erru, x, MPFR_RNDU); /* |x| */
  mpfr_mul (eps, eps, erru, MPFR_RNDU);
  mpfr_ui_sub (erru, k, erru, MPFR_RNDD);
  if (MPFR_IS_NEG (erru))
    {
      /* the truncated series does not converge, return fail */
      e = w;
    }
  else
    {
      mpfr_div (eps, eps, erru, MPFR_RNDU);
      mpfr_add (errs, errs, eps, MPFR_RNDU);
      mpfr_set_z (y, s, MPFR_RNDN);
      mpfr_div_2ui (y, y, w, MPFR_RNDN);
      /* errs was an absolute error bound on s. We must convert it to an error
         in terms of ulp(y). Since ulp(y) = 2^(EXP(y)-PREC(y)), we must
         divide the error by 2^(EXP(y)-PREC(y)), but since we divided also
         y by 2^w = 2^PREC(y), we must simply divide by 2^EXP(y). */
      e = MPFR_GET_EXP (errs) - MPFR_GET_EXP (y);
    }
  MPFR_GROUP_CLEAR (group);
  mpz_clear (s);
  mpz_clear (t);
  mpz_clear (u);
  mpz_clear (m);
  return e;
}

/* Return in y an approximation of Ei(x) using the asymptotic expansion:
   Ei(x) = exp(x)/x * (1 + 1/x + 2/x^2 + ... + k!/x^k + ...)
   Assumes |x| >= PREC(y) * log(2).
   Returns the error bound in terms of ulp(y).
*/
static mpfr_exp_t
mpfr_eint_asympt (mpfr_ptr y, mpfr_srcptr x)
{
  mpfr_prec_t p = MPFR_PREC(y);
  mpfr_t invx, t, err;
  unsigned long k;
  mpfr_exp_t err_exp;

  mpfr_init2 (t, p);
  mpfr_init2 (invx, p);
  mpfr_init2 (err, 31); /* error in ulps on y */
  mpfr_ui_div (invx, 1, x, MPFR_RNDN); /* invx = 1/x*(1+u) with |u|<=2^(1-p) */
  mpfr_set_ui (t, 1, MPFR_RNDN); /* exact */
  mpfr_set (y, t, MPFR_RNDN);
  mpfr_set_ui (err, 0, MPFR_RNDN);
  for (k = 1; MPFR_GET_EXP(t) + (mpfr_exp_t) p > MPFR_GET_EXP(y); k++)
    {
      mpfr_mul (t, t, invx, MPFR_RNDN); /* 2 more roundings */
      mpfr_mul_ui (t, t, k, MPFR_RNDN); /* 1 more rounding: t = k!/x^k*(1+u)^e
                                          with u=2^{-p} and |e| <= 3*k */
      /* we use the fact that |(1+u)^n-1| <= 2*|n*u| for |n*u| <= 1, thus
         the error on t is less than 6*k*2^{-p}*t <= 6*k*ulp(t) */
      /* err is in terms of ulp(y): transform it in terms of ulp(t) */
      mpfr_mul_2si (err, err, MPFR_GET_EXP(y) - MPFR_GET_EXP(t), MPFR_RNDU);
      mpfr_add_ui (err, err, 6 * k, MPFR_RNDU);
      /* transform back in terms of ulp(y) */
      mpfr_div_2si (err, err, MPFR_GET_EXP(y) - MPFR_GET_EXP(t), MPFR_RNDU);
      mpfr_add (y, y, t, MPFR_RNDN);
    }
  /* add the truncation error bounded by ulp(y): 1 ulp */
  mpfr_mul (y, y, invx, MPFR_RNDN); /* err <= 2*err + 3/2 */
  mpfr_exp (t, x, MPFR_RNDN); /* err(t) <= 1/2*ulp(t) */
  mpfr_mul (y, y, t, MPFR_RNDN); /* again: err <= 2*err + 3/2 */
  mpfr_mul_2ui (err, err, 2, MPFR_RNDU);
  mpfr_add_ui (err, err, 8, MPFR_RNDU);
  err_exp = MPFR_GET_EXP(err);
  mpfr_clear (t);
  mpfr_clear (invx);
  mpfr_clear (err);
  return err_exp;
}

/* mpfr_eint returns Ei(x) for x >= 0,
   and -E1(-x) for x < 0, following http://dlmf.nist.gov/6.2 */
int
mpfr_eint (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd)
{
  int inex;
  mpfr_t tmp, ump, x_abs;
  mpfr_exp_t err, te;
  mpfr_prec_t prec;
  MPFR_SAVE_EXPO_DECL (expo);
  MPFR_ZIV_DECL (loop);

  MPFR_LOG_FUNC (
    ("x[%Pu]=%.*Rg rnd=%d", mpfr_get_prec (x), mpfr_log_prec, x, rnd),
    ("y[%Pu]=%.*Rg inexact=%d", mpfr_get_prec (y), mpfr_log_prec, y, inex));

  if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
    {
      if (MPFR_IS_NAN (x))
        {
          MPFR_SET_NAN (y);
          MPFR_RET_NAN;
        }
      else if (MPFR_IS_INF (x))
        {
          /* eint(+inf) = +inf and eint(-inf) = -0 */
          if (MPFR_IS_POS (x))
            {
              MPFR_SET_INF(y);
              MPFR_SET_POS(y);
            }
          else
            {
              MPFR_SET_ZERO(y);
              MPFR_SET_NEG(y);
            }
          MPFR_RET(0);
        }
      else /* eint(+/-0) = -Inf */
        {
          MPFR_SET_INF(y);
          MPFR_SET_NEG(y);
          MPFR_SET_DIVBY0 ();
          MPFR_RET(0);
        }
    }

  MPFR_TMP_INIT_ABS (x_abs, x);

  MPFR_SAVE_EXPO_MARK (expo);

  /* Init stuff */
  prec = MPFR_PREC (y) + 2 * MPFR_INT_CEIL_LOG2 (MPFR_PREC (y)) + 6;
  mpfr_init2 (tmp, 64);
  mpfr_init2 (ump, 64);

  /* Since eint(x) >= exp(x)/x, we have log2(eint(x)) >= (x-log(x))/log(2).
     Let's compute k <= (x-log(x))/log(2) in a low precision. If k >= emax,
     then log2(eint(x)) >= emax, and eint(x) >= 2^emax, i.e. it overflows. */
  if (MPFR_IS_POS(x))
    {
      mpfr_log (tmp, x, MPFR_RNDU);
      mpfr_sub (ump, x, tmp, MPFR_RNDD);
      mpfr_div (ump, ump, __gmpfr_const_log2_RNDU, MPFR_RNDD);
      /* FIXME: We really need a mpfr_cmp_exp_t function. */
      MPFR_ASSERTN (MPFR_EMAX_MAX <= LONG_MAX);
      if (mpfr_cmp_ui (ump, __gmpfr_emax) >= 0)
        {
          mpfr_clear (tmp);
          mpfr_clear (ump);
          MPFR_SAVE_EXPO_FREE (expo);
          return mpfr_overflow (y, rnd, 1);
        }
    }

  /* Since E1(x) <= exp(-x) for x >= 1, we have log2(E1(x)) <= -x/log(2).
     Let's compute k >= -x/log(2) in a low precision. If k < emin
     then log2(E1(x)) <= emin-1, and E1(x) <= 2^(emin-1): it underflows. */
  if (MPFR_IS_NEG(x) && MPFR_GET_EXP(x) >= 1)
    {
      mpfr_div (ump, x, __gmpfr_const_log2_RNDD, MPFR_RNDU);
      MPFR_ASSERTN (MPFR_EMIN_MIN >= LONG_MIN);
      if (mpfr_cmp_si (ump, __gmpfr_emin) < 0)
        {
          mpfr_clear (tmp);
          mpfr_clear (ump);
          MPFR_SAVE_EXPO_FREE (expo);
          return mpfr_underflow (y, rnd, -1);
        }
    }

  /* eint() has a root 0.37250741078136663446...,
     so if x is near, already take more bits */
  if (MPFR_IS_POS(x) && MPFR_GET_EXP(x) == -1) /* 1/4 <= x < 1/2 */
    {
      mpfr_t y;
      mpfr_init2 (y, 32);
      /* 1599907147/2^32 is a 32-bit approximation of 0.37250741078136663446 */
      mpfr_set_ui_2exp (y, 1599907147UL, -32, MPFR_RNDN);
      mpfr_sub (y, x, y, MPFR_RNDN);
      prec += (mpfr_zero_p (y)) ? 32
        : mpfr_get_exp (y) < 0 ? -mpfr_get_exp (y) : 0;
      mpfr_clear (y);
    }

  mpfr_set_prec (tmp, prec);
  mpfr_set_prec (ump, prec);

  MPFR_ZIV_INIT (loop, prec);           /* Initialize the ZivLoop controller */
  for (;;)                              /* Infinite loop */
    {
      /* For the asymptotic expansion to work, we need that the smallest
         value of k!/|x|^k is smaller than 2^(-p). The minimum is obtained for
         x=k, and it is smaller than e*sqrt(x)/e^x for x>=1. */
      if (MPFR_GET_EXP (x) > 0 &&
          mpfr_cmp_d (x_abs, ((double) prec +
                            0.5 * (double) MPFR_GET_EXP (x)) * LOG2 + 1.0) > 0)
        err = mpfr_eint_asympt (tmp, x);
      else
        {
          err = mpfr_eint_aux (tmp, x); /* error <= 2^err ulp(tmp) */
          te = MPFR_GET_EXP(tmp);
          mpfr_const_euler (ump, MPFR_RNDN); /* 0.577 -> EXP(ump)=0 */
          mpfr_add (tmp, tmp, ump, MPFR_RNDN);
          /* If tmp <> 0:
             error <= 1/2 + 1/2*2^(EXP(ump)-EXP(tmp)) + 2^(te-EXP(tmp)+err)
             <= 1/2 + 2^(MAX(EXP(ump), te+err+1) - EXP(tmp))
             <= 2^(MAX(0, 1 + MAX(EXP(ump), te+err+1) - EXP(tmp))).
             If tmp = 0 we can use the same bound, replacing
             EXP(tmp) by EXP(ump). */
          err = MAX(1, te + err + 2);
          te = MPFR_IS_ZERO(tmp) ? MPFR_GET_EXP(ump) : MPFR_GET_EXP(tmp);
          err = err - te;
          err = MAX(0, err);
          mpfr_log (ump, x_abs, MPFR_RNDN);
          mpfr_add (tmp, tmp, ump, MPFR_RNDN);
          /* same formula as above, except now EXP(ump) is not 0 */
          err += te + 1;
          if (MPFR_LIKELY (!MPFR_IS_ZERO (ump)))
            err = MAX (MPFR_GET_EXP (ump), err);
          /* if tmp is zero, we surely cannot round correctly */
          err = (MPFR_IS_ZERO(tmp)) ? prec :  MAX(0, err - MPFR_GET_EXP (tmp));
        }
      /* Note: we assume here that MPFR_CAN_ROUND returns the same result
         for rnd and MPFR_INVERT_RND(rnd) */
      if (MPFR_LIKELY (MPFR_CAN_ROUND (tmp, prec - err, MPFR_PREC (y), rnd)))
        break;
      MPFR_ZIV_NEXT (loop, prec);        /* Increase used precision */
      mpfr_set_prec (tmp, prec);
      mpfr_set_prec (ump, prec);
    }
  MPFR_ZIV_FREE (loop);                  /* Free the ZivLoop Controller */

  /* Set y to the computed value */
  inex = mpfr_set (y, tmp, rnd);
  mpfr_clear (tmp);
  mpfr_clear (ump);

  MPFR_SAVE_EXPO_FREE (expo);
  return mpfr_check_range (y, inex, rnd);
}