1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
|
/* mpfr_exp -- exponential of a floating-point number
Copyright 1999-2019 Free Software Foundation, Inc.
Contributed by the AriC and Caramba projects, INRIA.
This file is part of the GNU MPFR Library.
The GNU MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The GNU MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
https://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
#include "mpfr-impl.h"
/* Cache for emin and emax bounds.
Contrary to other caches, it uses a fixed size for the mantissa,
so there is no dynamic allocation, and no need to free them. */
static MPFR_THREAD_ATTR mpfr_exp_t previous_emin;
static MPFR_THREAD_ATTR mp_limb_t bound_emin_limb[(32 - 1) / GMP_NUMB_BITS + 1];
static MPFR_THREAD_ATTR mpfr_t bound_emin;
static MPFR_THREAD_ATTR mpfr_exp_t previous_emax;
static MPFR_THREAD_ATTR mp_limb_t bound_emax_limb[(32 - 1) / GMP_NUMB_BITS + 1];
static MPFR_THREAD_ATTR mpfr_t bound_emax;
int
mpfr_exp (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd_mode)
{
mpfr_exp_t expx;
mpfr_prec_t precy;
int inexact;
MPFR_SAVE_EXPO_DECL (expo);
MPFR_LOG_FUNC
(("x[%Pu]=%.*Rg rnd=%d", mpfr_get_prec (x), mpfr_log_prec, x, rnd_mode),
("y[%Pu]=%.*Rg inexact=%d",
mpfr_get_prec (y), mpfr_log_prec, y, inexact));
if (MPFR_UNLIKELY( MPFR_IS_SINGULAR(x) ))
{
if (MPFR_IS_NAN(x))
{
MPFR_SET_NAN(y);
MPFR_RET_NAN;
}
else if (MPFR_IS_INF(x))
{
if (MPFR_IS_POS(x))
MPFR_SET_INF(y);
else
MPFR_SET_ZERO(y);
MPFR_SET_POS(y);
MPFR_RET(0);
}
else
{
MPFR_ASSERTD(MPFR_IS_ZERO(x));
return mpfr_set_ui (y, 1, rnd_mode);
}
}
/* First, let's detect most overflow and underflow cases. */
/* emax bound is cached. Check if the value in cache is ok */
if (MPFR_UNLIKELY (mpfr_get_emax() != previous_emax))
{
/* Recompute the emax bound */
mp_limb_t e_limb[MPFR_EXP_LIMB_SIZE];
mpfr_t e;
/* We extend the exponent range and save the flags. */
MPFR_SAVE_EXPO_MARK (expo);
MPFR_TMP_INIT1(e_limb, e, sizeof (mpfr_exp_t) * CHAR_BIT);
MPFR_TMP_INIT1(bound_emax_limb, bound_emax, 32);
inexact = mpfr_set_exp_t (e, expo.saved_emax, MPFR_RNDN);
MPFR_ASSERTD (inexact == 0);
mpfr_mul (bound_emax, expo.saved_emax < 0 ?
__gmpfr_const_log2_RNDD : __gmpfr_const_log2_RNDU,
e, MPFR_RNDU);
previous_emax = expo.saved_emax;
MPFR_SAVE_EXPO_FREE (expo);
}
/* mpfr_cmp works even in reduced emin,emax range */
if (MPFR_UNLIKELY (mpfr_cmp (x, bound_emax) >= 0))
{
/* x > log(2^emax), thus exp(x) > 2^emax */
return mpfr_overflow (y, rnd_mode, 1);
}
/* emin bound is cached. Check if the value in cache is ok */
if (MPFR_UNLIKELY (mpfr_get_emin() != previous_emin))
{
mp_limb_t e_limb[MPFR_EXP_LIMB_SIZE];
mpfr_t e;
/* We extend the exponent range and save the flags. */
MPFR_SAVE_EXPO_MARK (expo);
/* avoid using a full limb since arithmetic might be slower */
MPFR_TMP_INIT1(e_limb, e, sizeof (mpfr_exp_t) * CHAR_BIT - 1);
MPFR_TMP_INIT1(bound_emin_limb, bound_emin, 32);
inexact = mpfr_set_exp_t (e, expo.saved_emin, MPFR_RNDN);
MPFR_ASSERTD (inexact == 0);
inexact = mpfr_sub_ui (e, e, 2, MPFR_RNDN);
MPFR_ASSERTD (inexact == 0);
mpfr_const_log2 (bound_emin, expo.saved_emin < 0 ? MPFR_RNDU : MPFR_RNDD);
mpfr_mul (bound_emin, bound_emin, e, MPFR_RNDD);
previous_emin = expo.saved_emin;
MPFR_SAVE_EXPO_FREE (expo);
}
if (MPFR_UNLIKELY (mpfr_cmp (x, bound_emin) <= 0))
{
/* x < log(2^(emin - 2)), thus exp(x) < 2^(emin - 2) */
return mpfr_underflow (y, rnd_mode == MPFR_RNDN ? MPFR_RNDZ : rnd_mode,
1);
}
expx = MPFR_GET_EXP (x);
precy = MPFR_PREC (y);
/* if x < 2^(-precy), then exp(x) gives 1 +/- 1 ulp(1) */
if (MPFR_UNLIKELY (expx < 0 && (mpfr_uexp_t) (-expx) > precy))
{
mpfr_exp_t emin = __gmpfr_emin;
mpfr_exp_t emax = __gmpfr_emax;
int signx = MPFR_SIGN (x);
/* Make sure that the exponent range is large enough:
* [0,2] is sufficient in all precisions.
*/
__gmpfr_emin = 0;
__gmpfr_emax = 2;
MPFR_SET_POS (y);
if (MPFR_IS_NEG_SIGN (signx) && (rnd_mode == MPFR_RNDD ||
rnd_mode == MPFR_RNDZ))
{
mpfr_setmax (y, 0); /* y = 1 - epsilon */
inexact = -1;
}
else
{
mpfr_setmin (y, 1); /* y = 1 */
if (MPFR_IS_POS_SIGN (signx) && (rnd_mode == MPFR_RNDU ||
rnd_mode == MPFR_RNDA))
{
/* Warning: should work for precision 1 bit too! */
mpfr_nextabove (y);
inexact = 1;
}
else
inexact = -MPFR_FROM_SIGN_TO_INT(signx);
}
__gmpfr_emin = emin;
__gmpfr_emax = emax;
}
else /* General case */
{
if (MPFR_UNLIKELY (precy >= MPFR_EXP_THRESHOLD))
/* mpfr_exp_3 saves the exponent range and flags itself, otherwise
the flag changes in mpfr_exp_3 are lost */
inexact = mpfr_exp_3 (y, x, rnd_mode); /* O(M(n) log(n)^2) */
else
{
MPFR_SAVE_EXPO_MARK (expo);
inexact = mpfr_exp_2 (y, x, rnd_mode); /* O(n^(1/3) M(n)) */
MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, __gmpfr_flags);
MPFR_SAVE_EXPO_FREE (expo);
}
}
return mpfr_check_range (y, inexact, rnd_mode);
}
|