summaryrefslogtreecommitdiff
path: root/src/exp3.c
blob: a3998614cc0cb2f30482f1025cce384f5e70c380 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
/* mpfr_exp -- exponential of a floating-point number

Copyright 1999, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
Contributed by the Arenaire and Caramel projects, INRIA.

This file is part of the GNU MPFR Library.

The GNU MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

The GNU MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
License for more details.

You should have received a copy of the GNU Lesser General Public License
along with the GNU MPFR Library; see the file COPYING.LESSER.  If not, see
http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */

#define MPFR_NEED_LONGLONG_H /* for MPFR_MPZ_SIZEINBASE2 */
#include "mpfr-impl.h"

/* y <- exp(p/2^r) within 1 ulp, using 2^m terms from the series
   Assume |p/2^r| < 1.
   We use the following binary splitting formula:
   P(a,b) = p if a+1=b, P(a,c)*P(c,b) otherwise
   Q(a,b) = a*2^r if a+1=b [except Q(0,1)=1], Q(a,c)*Q(c,b) otherwise
   T(a,b) = P(a,b) if a+1=b, Q(c,b)*T(a,c)+P(a,c)*T(c,b) otherwise
   Then exp(p/2^r) ~ T(0,i)/Q(0,i) for i so that (p/2^r)^i/i! is small enough.

   Since P(a,b) = p^(b-a), and we consider only values of b-a of the form 2^j,
   we don't need to compute P(), we only precompute p^(2^j) in the ptoj[] array
   below.

   Since Q(a,b) is divisible by 2^(r*(b-a-1)), we don't compute the power of
   two part.
*/
static void
mpfr_exp_rational (mpfr_ptr y, mpz_ptr p, long r, int m,
                   mpz_t *Q, mpfr_prec_t *mult)
{
  unsigned long n, i, j;
  mpz_t *S, *ptoj;
  mpfr_prec_t *log2_nb_terms;
  mpfr_exp_t diff, expo;
  mpfr_prec_t precy = MPFR_PREC(y), prec_i_have, prec_ptoj;
  int k, l;

  MPFR_ASSERTN ((size_t) m < sizeof (long) * CHAR_BIT - 1);

  S    = Q + (m+1);
  ptoj = Q + 2*(m+1);                     /* ptoj[i] = mantissa^(2^i) */
  log2_nb_terms = mult + (m+1);

  /* Normalize p */
  MPFR_ASSERTD (mpz_cmp_ui (p, 0) != 0);
  n = mpz_scan1 (p, 0); /* number of trailing zeros in p */
  mpz_tdiv_q_2exp (p, p, n);
  r -= n; /* since |p/2^r| < 1 and p >= 1, r >= 1 */

  /* Set initial var */
  mpz_set (ptoj[0], p);
  for (k = 1; k < m; k++)
    mpz_mul (ptoj[k], ptoj[k-1], ptoj[k-1]); /* ptoj[k] = p^(2^k) */
  mpz_set_ui (Q[0], 1);
  mpz_set_ui (S[0], 1);
  k = 0;
  mult[0] = 0; /* the multiplier P[k]/Q[k] for the remaining terms
                  satisfies P[k]/Q[k] <= 2^(-mult[k]) */
  log2_nb_terms[0] = 0; /* log2(#terms) [exact in 1st loop where 2^k] */
  prec_i_have = 0;

  /* Main Loop */
  n = 1UL << m;
  for (i = 1; (prec_i_have < precy) && (i < n); i++)
    {
      /* invariant: Q[0]*Q[1]*...*Q[k] equals i! */
      k++;
      log2_nb_terms[k] = 0; /* 1 term */
      mpz_set_ui (Q[k], i + 1);
      mpz_set_ui (S[k], i + 1);
      j = i + 1; /* we have computed j = i+1 terms so far */
      l = 0;
      while ((j & 1) == 0) /* combine and reduce */
        {
          /* invariant: S[k] corresponds to 2^l consecutive terms */
          mpz_mul (S[k], S[k], ptoj[l]);
          mpz_mul (S[k-1], S[k-1], Q[k]);
          /* Q[k] corresponds to 2^l consecutive terms too.
             Since it does not contains the factor 2^(r*2^l),
             when going from l to l+1 we need to multiply
             by 2^(r*2^(l+1))/2^(r*2^l) = 2^(r*2^l) */
          mpz_mul_2exp (S[k-1], S[k-1], r << l);
          mpz_add (S[k-1], S[k-1], S[k]);
          mpz_mul (Q[k-1], Q[k-1], Q[k]);
          log2_nb_terms[k-1] ++; /* number of terms in S[k-1]
                                    is a power of 2 by construction */
          MPFR_MPZ_SIZEINBASE2 (prec_i_have, Q[k]);
          MPFR_MPZ_SIZEINBASE2 (prec_ptoj, ptoj[l]);
          mult[k-1] += prec_i_have + (r << l) - prec_ptoj - 1;
          prec_i_have = mult[k] = mult[k-1];
          /* since mult[k] >= mult[k-1] + nbits(Q[k]),
             we have Q[0]*...*Q[k] <= 2^mult[k] = 2^prec_i_have */
          l ++;
          j >>= 1;
          k --;
        }
    }

  /* accumulate all products in S[0] and Q[0]. Warning: contrary to above,
     here we do not have log2_nb_terms[k-1] = log2_nb_terms[k]+1. */
  l = 0; /* number of accumulated terms in the right part S[k]/Q[k] */
  while (k > 0)
    {
      j = log2_nb_terms[k-1];
      mpz_mul (S[k], S[k], ptoj[j]);
      mpz_mul (S[k-1], S[k-1], Q[k]);
      l += 1 << log2_nb_terms[k];
      mpz_mul_2exp (S[k-1], S[k-1], r * l);
      mpz_add (S[k-1], S[k-1], S[k]);
      mpz_mul (Q[k-1], Q[k-1], Q[k]);
      k--;
    }

  /* Q[0] now equals i! */
  MPFR_MPZ_SIZEINBASE2 (prec_i_have, S[0]);
  diff = (mpfr_exp_t) prec_i_have - 2 * (mpfr_exp_t) precy;
  expo = diff;
  if (diff >= 0)
    mpz_fdiv_q_2exp (S[0], S[0], diff);
  else
    mpz_mul_2exp (S[0], S[0], -diff);

  MPFR_MPZ_SIZEINBASE2 (prec_i_have, Q[0]);
  diff = (mpfr_exp_t) prec_i_have - (mpfr_prec_t) precy;
  expo -= diff;
  if (diff > 0)
    mpz_fdiv_q_2exp (Q[0], Q[0], diff);
  else
    mpz_mul_2exp (Q[0], Q[0], -diff);

  mpz_tdiv_q (S[0], S[0], Q[0]);
  mpfr_set_z (y, S[0], MPFR_RNDD);
  MPFR_SET_EXP (y, MPFR_GET_EXP (y) + expo - r * (i - 1) );
}

#define shift (GMP_NUMB_BITS/2)

int
mpfr_exp_3 (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd_mode)
{
  mpfr_t t, x_copy, tmp;
  mpz_t uk;
  mpfr_exp_t ttt, shift_x;
  unsigned long twopoweri;
  mpz_t *P;
  mpfr_prec_t *mult;
  int i, k, loop;
  int prec_x;
  mpfr_prec_t realprec, Prec;
  int iter;
  int inexact = 0;
  MPFR_SAVE_EXPO_DECL (expo);
  MPFR_ZIV_DECL (ziv_loop);

  MPFR_LOG_FUNC (("x[%#R]=%R rnd=%d", x, x, rnd_mode),
                 ("y[%#R]=%R inexact=%d", y, y, inexact));

  MPFR_SAVE_EXPO_MARK (expo);

  /* decompose x */
  /* we first write x = 1.xxxxxxxxxxxxx
     ----- k bits -- */
  prec_x = MPFR_INT_CEIL_LOG2 (MPFR_PREC (x)) - MPFR_LOG2_GMP_NUMB_BITS;
  if (prec_x < 0)
    prec_x = 0;

  ttt = MPFR_GET_EXP (x);
  mpfr_init2 (x_copy, MPFR_PREC(x));
  mpfr_set (x_copy, x, MPFR_RNDD);

  /* we shift to get a number less than 1 */
  if (ttt > 0)
    {
      shift_x = ttt;
      mpfr_div_2ui (x_copy, x, ttt, MPFR_RNDN);
      ttt = MPFR_GET_EXP (x_copy);
    }
  else
    shift_x = 0;
  MPFR_ASSERTD (ttt <= 0);

  /* Init prec and vars */
  realprec = MPFR_PREC (y) + MPFR_INT_CEIL_LOG2 (prec_x + MPFR_PREC (y));
  Prec = realprec + shift + 2 + shift_x;
  mpfr_init2 (t, Prec);
  mpfr_init2 (tmp, Prec);
  mpz_init (uk);

  /* Main loop */
  MPFR_ZIV_INIT (ziv_loop, realprec);
  for (;;)
    {
      int scaled = 0;
      MPFR_BLOCK_DECL (flags);

      k = MPFR_INT_CEIL_LOG2 (Prec) - MPFR_LOG2_GMP_NUMB_BITS;

      /* now we have to extract */
      twopoweri = GMP_NUMB_BITS;

      /* Allocate tables */
      P    = (mpz_t*) (*__gmp_allocate_func) (3*(k+2)*sizeof(mpz_t));
      for (i = 0; i < 3*(k+2); i++)
        mpz_init (P[i]);
      mult = (mpfr_prec_t*) (*__gmp_allocate_func) (2*(k+2)*sizeof(mpfr_prec_t));

      /* Particular case for i==0 */
      mpfr_extract (uk, x_copy, 0);
      MPFR_ASSERTD (mpz_cmp_ui (uk, 0) != 0);
      mpfr_exp_rational (tmp, uk, shift + twopoweri - ttt, k + 1, P, mult);
      for (loop = 0; loop < shift; loop++)
        mpfr_sqr (tmp, tmp, MPFR_RNDD);
      twopoweri *= 2;

      /* General case */
      iter = (k <= prec_x) ? k : prec_x;
      for (i = 1; i <= iter; i++)
        {
          mpfr_extract (uk, x_copy, i);
          if (MPFR_LIKELY (mpz_cmp_ui (uk, 0) != 0))
            {
              mpfr_exp_rational (t, uk, twopoweri - ttt, k  - i + 1, P, mult);
              mpfr_mul (tmp, tmp, t, MPFR_RNDD);
            }
          MPFR_ASSERTN (twopoweri <= LONG_MAX/2);
          twopoweri *=2;
        }

      /* Clear tables */
      for (i = 0; i < 3*(k+2); i++)
        mpz_clear (P[i]);
      (*__gmp_free_func) (P, 3*(k+2)*sizeof(mpz_t));
      (*__gmp_free_func) (mult, 2*(k+2)*sizeof(mpfr_prec_t));

      if (shift_x > 0)
        {
          MPFR_BLOCK (flags, {
              for (loop = 0; loop < shift_x - 1; loop++)
                mpfr_sqr (tmp, tmp, MPFR_RNDD);
              mpfr_sqr (t, tmp, MPFR_RNDD);
            } );

          if (MPFR_UNLIKELY (MPFR_OVERFLOW (flags)))
            {
              /* tmp <= exact result, so that it is a real overflow. */
              inexact = mpfr_overflow (y, rnd_mode, 1);
              MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, MPFR_FLAGS_OVERFLOW);
              break;
            }

          if (MPFR_UNLIKELY (MPFR_UNDERFLOW (flags)))
            {
              /* This may be a spurious underflow. So, let's scale
                 the result. */
              mpfr_mul_2ui (tmp, tmp, 1, MPFR_RNDD);  /* no overflow, exact */
              mpfr_sqr (t, tmp, MPFR_RNDD);
              if (MPFR_IS_ZERO (t))
                {
                  /* approximate result < 2^(emin - 3), thus
                     exact result < 2^(emin - 2). */
                  inexact = mpfr_underflow (y, (rnd_mode == MPFR_RNDN) ?
                                            MPFR_RNDZ : rnd_mode, 1);
                  MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, MPFR_FLAGS_UNDERFLOW);
                  break;
                }
              scaled = 1;
            }
        }

      if (mpfr_can_round (shift_x > 0 ? t : tmp, realprec, MPFR_RNDD, MPFR_RNDZ,
                          MPFR_PREC(y) + (rnd_mode == MPFR_RNDN)))
        {
          inexact = mpfr_set (y, shift_x > 0 ? t : tmp, rnd_mode);
          if (MPFR_UNLIKELY (scaled && MPFR_IS_PURE_FP (y)))
            {
              int inex2;
              mpfr_exp_t ey;

              /* The result has been scaled and needs to be corrected. */
              ey = MPFR_GET_EXP (y);
              inex2 = mpfr_mul_2si (y, y, -2, rnd_mode);
              if (inex2)  /* underflow */
                {
                  if (rnd_mode == MPFR_RNDN && inexact < 0 &&
                      MPFR_IS_ZERO (y) && ey == __gmpfr_emin + 1)
                    {
                      /* Double rounding case: in MPFR_RNDN, the scaled
                         result has been rounded downward to 2^emin.
                         As the exact result is > 2^(emin - 2), correct
                         rounding must be done upward. */
                      /* TODO: make sure in coverage tests that this line
                         is reached. */
                      inexact = mpfr_underflow (y, MPFR_RNDU, 1);
                    }
                  else
                    {
                      /* No double rounding. */
                      inexact = inex2;
                    }
                  MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, MPFR_FLAGS_UNDERFLOW);
                }
            }
          break;
        }

      MPFR_ZIV_NEXT (ziv_loop, realprec);
      Prec = realprec + shift + 2 + shift_x;
      mpfr_set_prec (t, Prec);
      mpfr_set_prec (tmp, Prec);
    }
  MPFR_ZIV_FREE (ziv_loop);

  mpz_clear (uk);
  mpfr_clear (tmp);
  mpfr_clear (t);
  mpfr_clear (x_copy);
  MPFR_SAVE_EXPO_FREE (expo);
  return inexact;
}