1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
|
/* mpfr_fma -- Floating multiply-add
Copyright 2001-2002, 2004, 2006-2015 Free Software Foundation, Inc.
Contributed by the AriC and Caramel projects, INRIA.
This file is part of the GNU MPFR Library.
The GNU MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The GNU MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
#include "mpfr-impl.h"
/* The fused-multiply-add (fma) of x, y and z is defined by:
fma(x,y,z)= x*y + z
*/
/* this function deals with all cases where inputs are singular, i.e.,
either NaN, Inf or zero */
static int
mpfr_fma_singular (mpfr_ptr s, mpfr_srcptr x, mpfr_srcptr y, mpfr_srcptr z,
mpfr_rnd_t rnd_mode)
{
if (MPFR_IS_NAN(x) || MPFR_IS_NAN(y) || MPFR_IS_NAN(z))
{
MPFR_SET_NAN(s);
MPFR_RET_NAN;
}
/* now neither x, y or z is NaN */
else if (MPFR_IS_INF(x) || MPFR_IS_INF(y))
{
/* cases Inf*0+z, 0*Inf+z, Inf-Inf */
if ((MPFR_IS_ZERO(y)) ||
(MPFR_IS_ZERO(x)) ||
(MPFR_IS_INF(z) &&
((MPFR_MULT_SIGN(MPFR_SIGN(x), MPFR_SIGN(y))) != MPFR_SIGN(z))))
{
MPFR_SET_NAN(s);
MPFR_RET_NAN;
}
else if (MPFR_IS_INF(z)) /* case Inf-Inf already checked above */
{
MPFR_SET_INF(s);
MPFR_SET_SAME_SIGN(s, z);
MPFR_RET(0);
}
else /* z is finite */
{
MPFR_SET_INF(s);
MPFR_SET_SIGN(s, MPFR_MULT_SIGN(MPFR_SIGN(x) , MPFR_SIGN(y)));
MPFR_RET(0);
}
}
/* now x and y are finite */
else if (MPFR_IS_INF(z))
{
MPFR_SET_INF(s);
MPFR_SET_SAME_SIGN(s, z);
MPFR_RET(0);
}
else if (MPFR_IS_ZERO(x) || MPFR_IS_ZERO(y))
{
if (MPFR_IS_ZERO(z))
{
int sign_p;
sign_p = MPFR_MULT_SIGN( MPFR_SIGN(x) , MPFR_SIGN(y) );
MPFR_SET_SIGN(s, (rnd_mode != MPFR_RNDD ?
(MPFR_IS_NEG_SIGN(sign_p) && MPFR_IS_NEG(z) ?
MPFR_SIGN_NEG : MPFR_SIGN_POS) :
(MPFR_IS_POS_SIGN(sign_p) && MPFR_IS_POS(z) ?
MPFR_SIGN_POS : MPFR_SIGN_NEG)));
MPFR_SET_ZERO(s);
MPFR_RET(0);
}
else
return mpfr_set (s, z, rnd_mode);
}
else /* necessarily z is zero here */
{
MPFR_ASSERTD(MPFR_IS_ZERO(z));
return mpfr_mul (s, x, y, rnd_mode);
}
}
int
mpfr_fma (mpfr_ptr s, mpfr_srcptr x, mpfr_srcptr y, mpfr_srcptr z,
mpfr_rnd_t rnd_mode)
{
int inexact;
mpfr_t u;
MPFR_SAVE_EXPO_DECL (expo);
MPFR_GROUP_DECL(group);
MPFR_LOG_FUNC
(("x[%Pu]=%.*Rg y[%Pu]=%.*Rg z[%Pu]=%.*Rg rnd=%d",
mpfr_get_prec (x), mpfr_log_prec, x,
mpfr_get_prec (y), mpfr_log_prec, y,
mpfr_get_prec (z), mpfr_log_prec, z, rnd_mode),
("s[%Pu]=%.*Rg inexact=%d",
mpfr_get_prec (s), mpfr_log_prec, s, inexact));
/* particular cases */
if (MPFR_UNLIKELY( MPFR_IS_SINGULAR(x) || MPFR_IS_SINGULAR(y) ||
MPFR_IS_SINGULAR(z) ))
return mpfr_fma_singular (s, x, y, z, rnd_mode);
/* If we take prec(u) >= prec(x) + prec(y), the product u <- x*y
is exact, except in case of overflow or underflow. */
MPFR_SAVE_EXPO_MARK (expo);
MPFR_GROUP_INIT_1 (group, MPFR_PREC(x) + MPFR_PREC(y), u);
if (MPFR_UNLIKELY (mpfr_mul (u, x, y, MPFR_RNDN)))
{
/* overflow or underflow - this case is regarded as rare, thus
does not need to be very efficient (even if some tests below
could have been done earlier).
It is an overflow iff u is an infinity (since MPFR_RNDN was used).
Alternatively, we could test the overflow flag, but in this case,
mpfr_clear_flags would have been necessary. */
if (MPFR_IS_INF (u)) /* overflow */
{
/* Let's eliminate the obvious case where x*y and z have the
same sign. No possible cancellation -> real overflow.
Also, we know that |z| < 2^emax. If E(x) + E(y) >= emax+3,
then |x*y| >= 2^(emax+1), and |x*y + z| >= 2^emax. This case
is also an overflow. */
if (MPFR_SIGN (u) == MPFR_SIGN (z) ||
MPFR_GET_EXP (x) + MPFR_GET_EXP (y) >= __gmpfr_emax + 3)
{
MPFR_GROUP_CLEAR (group);
MPFR_SAVE_EXPO_FREE (expo);
return mpfr_overflow (s, rnd_mode, MPFR_SIGN (z));
}
/* E(x) + E(y) <= emax+2, therefore |x*y| < 2^(emax+2), and
(x/4)*y does not overflow (let's recall that the result
is exact with an unbounded exponent range). It does not
underflow either, because x*y overflows and the exponent
range is large enough. */
inexact = mpfr_div_2ui (u, x, 2, MPFR_RNDN);
MPFR_ASSERTN (inexact == 0);
inexact = mpfr_mul (u, u, y, MPFR_RNDN);
MPFR_ASSERTN (inexact == 0);
/* Now, we need to add z/4... But it may underflow! */
{
mpfr_t zo4;
mpfr_srcptr zz;
MPFR_BLOCK_DECL (flags);
if (MPFR_GET_EXP (u) > MPFR_GET_EXP (z) &&
MPFR_GET_EXP (u) - MPFR_GET_EXP (z) > MPFR_PREC (u))
{
/* |z| < ulp(u)/2, therefore one can use z instead of z/4. */
zz = z;
}
else
{
mpfr_init2 (zo4, MPFR_PREC (z));
if (mpfr_div_2ui (zo4, z, 2, MPFR_RNDZ))
{
/* The division by 4 underflowed! */
MPFR_ASSERTN (0); /* TODO... */
}
zz = zo4;
}
/* Let's recall that u = x*y/4 and zz = z/4 (or z if the
following addition would give the same result). */
MPFR_BLOCK (flags, inexact = mpfr_add (s, u, zz, rnd_mode));
/* u and zz have different signs, so that an overflow
is not possible. But an underflow is theoretically
possible! */
if (MPFR_UNDERFLOW (flags))
{
MPFR_ASSERTN (zz != z);
MPFR_ASSERTN (0); /* TODO... */
mpfr_clears (zo4, u, (mpfr_ptr) 0);
}
else
{
int inex2;
if (zz != z)
mpfr_clear (zo4);
MPFR_GROUP_CLEAR (group);
MPFR_ASSERTN (! MPFR_OVERFLOW (flags));
inex2 = mpfr_mul_2ui (s, s, 2, rnd_mode);
if (inex2) /* overflow */
{
inexact = inex2;
MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, __gmpfr_flags);
}
goto end;
}
}
}
else /* underflow: one has |xy| < 2^(emin-1). */
{
unsigned long scale = 0;
mpfr_t scaled_z;
mpfr_srcptr new_z;
mpfr_exp_t diffexp;
mpfr_prec_t pzs;
int xy_underflows;
/* Let's scale z so that ulp(z) > 2^emin and ulp(s) > 2^emin
(the + 1 on MPFR_PREC (s) is necessary because the exponent
of the result can be EXP(z) - 1). */
diffexp = MPFR_GET_EXP (z) - __gmpfr_emin;
pzs = MAX (MPFR_PREC (z), MPFR_PREC (s) + 1);
if (diffexp <= pzs)
{
mpfr_uexp_t uscale;
mpfr_t scaled_v;
MPFR_BLOCK_DECL (flags);
uscale = (mpfr_uexp_t) pzs - diffexp + 1;
MPFR_ASSERTN (uscale > 0);
MPFR_ASSERTN (uscale <= ULONG_MAX);
scale = uscale;
mpfr_init2 (scaled_z, MPFR_PREC (z));
inexact = mpfr_mul_2ui (scaled_z, z, scale, MPFR_RNDN);
MPFR_ASSERTN (inexact == 0); /* TODO: overflow case */
new_z = scaled_z;
/* Now we need to recompute u = xy * 2^scale. */
MPFR_BLOCK (flags,
if (MPFR_GET_EXP (x) < MPFR_GET_EXP (y))
{
mpfr_init2 (scaled_v, MPFR_PREC (x));
mpfr_mul_2ui (scaled_v, x, scale, MPFR_RNDN);
mpfr_mul (u, scaled_v, y, MPFR_RNDN);
}
else
{
mpfr_init2 (scaled_v, MPFR_PREC (y));
mpfr_mul_2ui (scaled_v, y, scale, MPFR_RNDN);
mpfr_mul (u, x, scaled_v, MPFR_RNDN);
});
mpfr_clear (scaled_v);
MPFR_ASSERTN (! MPFR_OVERFLOW (flags));
xy_underflows = MPFR_UNDERFLOW (flags);
}
else
{
new_z = z;
xy_underflows = 1;
}
if (xy_underflows)
{
/* Let's replace xy by sign(xy) * 2^(emin-1). */
MPFR_PREC (u) = MPFR_PREC_MIN;
mpfr_setmin (u, __gmpfr_emin);
MPFR_SET_SIGN (u, MPFR_MULT_SIGN (MPFR_SIGN (x),
MPFR_SIGN (y)));
}
{
MPFR_BLOCK_DECL (flags);
MPFR_BLOCK (flags, inexact = mpfr_add (s, u, new_z, rnd_mode));
MPFR_GROUP_CLEAR (group);
if (scale != 0)
{
int inex2;
mpfr_clear (scaled_z);
/* Here an overflow is theoretically possible, in which case
the result may be wrong, hence the assert. An underflow
is not possible, but let's check that anyway. */
MPFR_ASSERTN (! MPFR_OVERFLOW (flags)); /* TODO... */
MPFR_ASSERTN (! MPFR_UNDERFLOW (flags)); /* not possible */
inex2 = mpfr_div_2ui (s, s, scale, MPFR_RNDN);
/* FIXME: this seems incorrect. MPFR_RNDN -> rnd_mode?
Also, handle the double rounding case:
s / 2^scale = 2^(emin - 2) in MPFR_RNDN. */
if (inex2) /* underflow */
inexact = inex2;
}
}
/* FIXME/TODO: I'm not sure that the following is correct.
Check for possible spurious exceptions due to intermediate
computations. */
MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, __gmpfr_flags);
goto end;
}
}
inexact = mpfr_add (s, u, z, rnd_mode);
MPFR_GROUP_CLEAR (group);
MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, __gmpfr_flags);
end:
MPFR_SAVE_EXPO_FREE (expo);
return mpfr_check_range (s, inexact, rnd_mode);
}
|