1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
|
/* mpfr_get_decimal64 -- convert a multiple precision floating-point number
to an IEEE 754-2008 decimal64 float
See https://gcc.gnu.org/ml/gcc/2006-06/msg00691.html,
https://gcc.gnu.org/onlinedocs/gcc/Decimal-Float.html,
and TR 24732 <http://www.open-std.org/jtc1/sc22/wg14/www/projects#24732>.
Copyright 2006-2018 Free Software Foundation, Inc.
Contributed by the AriC and Caramba projects, INRIA.
This file is part of the GNU MPFR Library.
The GNU MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The GNU MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
#include "mpfr-impl.h"
#define ISDIGIT(c) ('0' <= c && c <= '9')
#ifdef MPFR_WANT_DECIMAL_FLOATS
#if _MPFR_IEEE_FLOATS
#else
#include "ieee_floats.h"
#endif
#ifndef DEC64_MAX
# define DEC64_MAX 9.999999999999999E384dd
#endif
#ifdef DPD_FORMAT
static const int T[1000] = {
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 32,
33, 34, 35, 36, 37, 38, 39, 40, 41, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57,
64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 80, 81, 82, 83, 84, 85, 86, 87, 88,
89, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 10, 11, 42, 43, 74, 75, 106, 107, 78, 79, 26, 27,
58, 59, 90, 91, 122, 123, 94, 95, 128, 129, 130, 131, 132, 133, 134, 135,
136, 137, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 160, 161, 162,
163, 164, 165, 166, 167, 168, 169, 176, 177, 178, 179, 180, 181, 182, 183,
184, 185, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 208, 209, 210,
211, 212, 213, 214, 215, 216, 217, 224, 225, 226, 227, 228, 229, 230, 231,
232, 233, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 138, 139, 170,
171, 202, 203, 234, 235, 206, 207, 154, 155, 186, 187, 218, 219, 250, 251,
222, 223, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 272, 273, 274,
275, 276, 277, 278, 279, 280, 281, 288, 289, 290, 291, 292, 293, 294, 295,
296, 297, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 320, 321, 322,
323, 324, 325, 326, 327, 328, 329, 336, 337, 338, 339, 340, 341, 342, 343,
344, 345, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 368, 369, 370,
371, 372, 373, 374, 375, 376, 377, 266, 267, 298, 299, 330, 331, 362, 363,
334, 335, 282, 283, 314, 315, 346, 347, 378, 379, 350, 351, 384, 385, 386,
387, 388, 389, 390, 391, 392, 393, 400, 401, 402, 403, 404, 405, 406, 407,
408, 409, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 432, 433, 434,
435, 436, 437, 438, 439, 440, 441, 448, 449, 450, 451, 452, 453, 454, 455,
456, 457, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 480, 481, 482,
483, 484, 485, 486, 487, 488, 489, 496, 497, 498, 499, 500, 501, 502, 503,
504, 505, 394, 395, 426, 427, 458, 459, 490, 491, 462, 463, 410, 411, 442,
443, 474, 475, 506, 507, 478, 479, 512, 513, 514, 515, 516, 517, 518, 519,
520, 521, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 544, 545, 546,
547, 548, 549, 550, 551, 552, 553, 560, 561, 562, 563, 564, 565, 566, 567,
568, 569, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 592, 593, 594,
595, 596, 597, 598, 599, 600, 601, 608, 609, 610, 611, 612, 613, 614, 615,
616, 617, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 522, 523, 554,
555, 586, 587, 618, 619, 590, 591, 538, 539, 570, 571, 602, 603, 634, 635,
606, 607, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 656, 657, 658,
659, 660, 661, 662, 663, 664, 665, 672, 673, 674, 675, 676, 677, 678, 679,
680, 681, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 704, 705, 706,
707, 708, 709, 710, 711, 712, 713, 720, 721, 722, 723, 724, 725, 726, 727,
728, 729, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 752, 753, 754,
755, 756, 757, 758, 759, 760, 761, 650, 651, 682, 683, 714, 715, 746, 747,
718, 719, 666, 667, 698, 699, 730, 731, 762, 763, 734, 735, 768, 769, 770,
771, 772, 773, 774, 775, 776, 777, 784, 785, 786, 787, 788, 789, 790, 791,
792, 793, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 816, 817, 818,
819, 820, 821, 822, 823, 824, 825, 832, 833, 834, 835, 836, 837, 838, 839,
840, 841, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 864, 865, 866,
867, 868, 869, 870, 871, 872, 873, 880, 881, 882, 883, 884, 885, 886, 887,
888, 889, 778, 779, 810, 811, 842, 843, 874, 875, 846, 847, 794, 795, 826,
827, 858, 859, 890, 891, 862, 863, 896, 897, 898, 899, 900, 901, 902, 903,
904, 905, 912, 913, 914, 915, 916, 917, 918, 919, 920, 921, 928, 929, 930,
931, 932, 933, 934, 935, 936, 937, 944, 945, 946, 947, 948, 949, 950, 951,
952, 953, 960, 961, 962, 963, 964, 965, 966, 967, 968, 969, 976, 977, 978,
979, 980, 981, 982, 983, 984, 985, 992, 993, 994, 995, 996, 997, 998, 999,
1000, 1001, 1008, 1009, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1017, 906,
907, 938, 939, 970, 971, 1002, 1003, 974, 975, 922, 923, 954, 955, 986,
987, 1018, 1019, 990, 991, 12, 13, 268, 269, 524, 525, 780, 781, 46, 47, 28,
29, 284, 285, 540, 541, 796, 797, 62, 63, 44, 45, 300, 301, 556, 557, 812,
813, 302, 303, 60, 61, 316, 317, 572, 573, 828, 829, 318, 319, 76, 77,
332, 333, 588, 589, 844, 845, 558, 559, 92, 93, 348, 349, 604, 605, 860,
861, 574, 575, 108, 109, 364, 365, 620, 621, 876, 877, 814, 815, 124, 125,
380, 381, 636, 637, 892, 893, 830, 831, 14, 15, 270, 271, 526, 527, 782,
783, 110, 111, 30, 31, 286, 287, 542, 543, 798, 799, 126, 127, 140, 141,
396, 397, 652, 653, 908, 909, 174, 175, 156, 157, 412, 413, 668, 669, 924,
925, 190, 191, 172, 173, 428, 429, 684, 685, 940, 941, 430, 431, 188, 189,
444, 445, 700, 701, 956, 957, 446, 447, 204, 205, 460, 461, 716, 717, 972,
973, 686, 687, 220, 221, 476, 477, 732, 733, 988, 989, 702, 703, 236, 237,
492, 493, 748, 749, 1004, 1005, 942, 943, 252, 253, 508, 509, 764, 765,
1020, 1021, 958, 959, 142, 143, 398, 399, 654, 655, 910, 911, 238, 239, 158,
159, 414, 415, 670, 671, 926, 927, 254, 255};
#endif
/* construct a decimal64 NaN */
static _Decimal64
get_decimal64_nan (void)
{
#if _MPFR_IEEE_FLOATS
union mpfr_ieee_double_extract x;
union ieee_double_decimal64 y;
x.s.exp = 1984; /* G[0]..G[4] = 11111: quiet NaN */
y.d = x.d;
return y.d64;
#else
return (_Decimal64) MPFR_DBL_NAN;
#endif
}
/* construct the decimal64 Inf with given sign */
static _Decimal64
get_decimal64_inf (int negative)
{
#if _MPFR_IEEE_FLOATS
union mpfr_ieee_double_extract x;
union ieee_double_decimal64 y;
x.s.sig = (negative) ? 1 : 0;
x.s.exp = 1920; /* G[0]..G[4] = 11110: Inf */
y.d = x.d;
return y.d64;
#else
return (_Decimal64) (negative ? MPFR_DBL_INFM : MPFR_DBL_INFP);
#endif
}
/* construct the decimal64 zero with given sign */
static _Decimal64
get_decimal64_zero (int negative)
{
union ieee_double_decimal64 y;
/* zero has the same representation in binary64 and decimal64 */
y.d = negative ? DBL_NEG_ZERO : 0.0;
return y.d64;
}
/* construct the decimal64 smallest non-zero with given sign */
static _Decimal64
get_decimal64_min (int negative)
{
return negative ? - 1E-398dd : 1E-398dd;
}
/* construct the decimal64 largest finite number with given sign */
static _Decimal64
get_decimal64_max (int negative)
{
return negative ? - DEC64_MAX : DEC64_MAX;
}
/* one-to-one conversion:
s is a decimal string representing a number x = m * 10^e which must be
exactly representable in the decimal64 format, i.e.
(a) the mantissa m has at most 16 decimal digits
(b1) -383 <= e <= 384 with m integer multiple of 10^(-15), |m| < 10
(b2) or -398 <= e <= 369 with m integer, |m| < 10^16.
Assumes s is neither NaN nor +Inf nor -Inf.
*/
#if _MPFR_IEEE_FLOATS
static _Decimal64
string_to_Decimal64 (char *s)
{
long int exp = 0;
char m[17];
long n = 0; /* mantissa length */
char *endptr[1];
union mpfr_ieee_double_extract x;
union ieee_double_decimal64 y;
#ifdef DPD_FORMAT
unsigned int G, d1, d2, d3, d4, d5;
#endif
/* read sign */
if (*s == '-')
{
x.s.sig = 1;
s ++;
}
else
x.s.sig = 0;
/* read mantissa */
while (ISDIGIT (*s))
m[n++] = *s++;
exp = n;
if (*s == '.')
{
s ++;
while (ISDIGIT (*s))
m[n++] = *s++;
}
/* we have exp digits before decimal point, and a total of n digits */
exp -= n; /* we will consider an integer mantissa */
MPFR_ASSERTN(n <= 16);
if (*s == 'E' || *s == 'e')
exp += strtol (s + 1, endptr, 10);
else
*endptr = s;
MPFR_ASSERTN(**endptr == '\0');
MPFR_ASSERTN(-398 <= exp && exp <= (long) (385 - n));
while (n < 16)
{
m[n++] = '0';
exp --;
}
/* now n=16 and -398 <= exp <= 369 */
m[n] = '\0';
/* compute biased exponent */
exp += 398;
MPFR_ASSERTN(exp >= -15);
if (exp < 0)
{
int i;
n = -exp;
/* check the last n digits of the mantissa are zero */
for (i = 1; i <= n; i++)
MPFR_ASSERTN(m[16 - n] == '0');
/* shift the first (16-n) digits to the right */
for (i = 16 - n - 1; i >= 0; i--)
m[i + n] = m[i];
/* zero the first n digits */
for (i = 0; i < n; i ++)
m[i] = '0';
exp = 0;
}
/* now convert to DPD or BID */
#ifdef DPD_FORMAT
#define CH(d) (d - '0')
if (m[0] >= '8')
G = (3 << 11) | ((exp & 768) << 1) | ((CH(m[0]) & 1) << 8);
else
G = ((exp & 768) << 3) | (CH(m[0]) << 8);
/* now the most 5 significant bits of G are filled */
G |= exp & 255;
d1 = T[100 * CH(m[1]) + 10 * CH(m[2]) + CH(m[3])]; /* 10-bit encoding */
d2 = T[100 * CH(m[4]) + 10 * CH(m[5]) + CH(m[6])]; /* 10-bit encoding */
d3 = T[100 * CH(m[7]) + 10 * CH(m[8]) + CH(m[9])]; /* 10-bit encoding */
d4 = T[100 * CH(m[10]) + 10 * CH(m[11]) + CH(m[12])]; /* 10-bit encoding */
d5 = T[100 * CH(m[13]) + 10 * CH(m[14]) + CH(m[15])]; /* 10-bit encoding */
x.s.exp = G >> 2;
x.s.manh = ((G & 3) << 18) | (d1 << 8) | (d2 >> 2);
x.s.manl = (d2 & 3) << 30;
x.s.manl |= (d3 << 20) | (d4 << 10) | d5;
#else /* BID format */
{
mp_size_t rn;
mp_limb_t rp[2];
int case_i = strcmp (m, "9007199254740992") < 0;
for (n = 0; n < 16; n++)
m[n] -= '0';
rn = mpn_set_str (rp, (unsigned char *) m, 16, 10);
if (rn == 1)
rp[1] = 0;
#if GMP_NUMB_BITS > 32
rp[1] = rp[1] << (GMP_NUMB_BITS - 32);
rp[1] |= rp[0] >> 32;
rp[0] &= 4294967295UL;
#endif
if (case_i)
{ /* s < 2^53: case i) */
x.s.exp = exp << 1;
x.s.manl = rp[0]; /* 32 bits */
x.s.manh = rp[1] & 1048575; /* 20 low bits */
x.s.exp |= rp[1] >> 20; /* 1 bit */
}
else /* s >= 2^53: case ii) */
{
x.s.exp = 1536 | (exp >> 1);
x.s.manl = rp[0];
x.s.manh = (rp[1] ^ 2097152) | ((exp & 1) << 19);
}
}
#endif /* DPD_FORMAT */
y.d = x.d;
return y.d64;
}
#else
/* portable version */
static _Decimal64
string_to_Decimal64 (char *s)
{
long int exp = 0;
char m[17];
long n = 0; /* mantissa length */
char *endptr[1];
_Decimal64 x = 0.0;
int sign = 0;
#ifdef DPD_FORMAT
unsigned int G, d1, d2, d3, d4, d5;
#endif
/* read sign */
if (*s == '-')
{
sign = 1;
s ++;
}
/* read mantissa */
while (ISDIGIT (*s))
m[n++] = *s++;
exp = n;
if (*s == '.')
{
s ++;
while (ISDIGIT (*s))
m[n++] = *s++;
}
/* we have exp digits before decimal point, and a total of n digits */
exp -= n; /* we will consider an integer mantissa */
MPFR_ASSERTN(n <= 16);
if (*s == 'E' || *s == 'e')
exp += strtol (s + 1, endptr, 10);
else
*endptr = s;
MPFR_ASSERTN(**endptr == '\0');
MPFR_ASSERTN(-398 <= exp && exp <= (long) (385 - n));
while (n < 16)
{
m[n++] = '0';
exp --;
}
/* now n=16 and -398 <= exp <= 369 */
m[n] = '\0';
/* the number to convert is m[] * 10^exp where the mantissa is a 16-digit
integer */
/* compute biased exponent */
exp += 398;
MPFR_ASSERTN(exp >= -15);
if (exp < 0)
{
int i;
n = -exp;
/* check the last n digits of the mantissa are zero */
for (i = 1; i <= n; i++)
MPFR_ASSERTN(m[16 - n] == '0');
/* shift the first (16-n) digits to the right */
for (i = 16 - n - 1; i >= 0; i--)
m[i + n] = m[i];
/* zero the first n digits */
for (i = 0; i < n; i ++)
m[i] = '0';
exp = 0;
}
/* the number to convert is m[] * 10^(exp-398) */
exp -= 398;
for (n = 0; n < 16; n++)
x = (_Decimal64) 10.0 * x + (_Decimal64) (m[n] - '0');
/* multiply by 10^exp */
if (exp > 0)
{
_Decimal64 ten16 = (double) 1e16; /* 10^16 is exactly representable
in binary64 */
_Decimal64 ten32 = ten16 * ten16;
_Decimal64 ten64 = ten32 * ten32;
_Decimal64 ten128 = ten64 * ten64;
_Decimal64 ten256 = ten128 * ten128;
if (exp >= 256)
{
x *= ten256;
exp -= 256;
}
if (exp >= 128)
{
x *= ten128;
exp -= 128;
}
if (exp >= 64)
{
x *= ten64;
exp -= 64;
}
if (exp >= 32)
{
x *= ten32;
exp -= 32;
}
if (exp >= 16)
{
x *= (_Decimal64) 10000000000000000.0;
exp -= 16;
}
if (exp >= 8)
{
x *= (_Decimal64) 100000000.0;
exp -= 8;
}
if (exp >= 4)
{
x *= (_Decimal64) 10000.0;
exp -= 4;
}
if (exp >= 2)
{
x *= (_Decimal64) 100.0;
exp -= 2;
}
if (exp >= 1)
{
x *= (_Decimal64) 10.0;
exp -= 1;
}
}
else if (exp < 0)
{
_Decimal64 ten16 = (double) 1e16; /* 10^16 is exactly representable
in binary64 */
_Decimal64 ten32 = ten16 * ten16;
_Decimal64 ten64 = ten32 * ten32;
_Decimal64 ten128 = ten64 * ten64;
_Decimal64 ten256 = ten128 * ten128;
if (exp <= -256)
{
x /= ten256;
exp += 256;
}
if (exp <= -128)
{
x /= ten128;
exp += 128;
}
if (exp <= -64)
{
x /= ten64;
exp += 64;
}
if (exp <= -32)
{
x /= ten32;
exp += 32;
}
if (exp <= -16)
{
x /= (_Decimal64) 10000000000000000.0;
exp += 16;
}
if (exp <= -8)
{
x /= (_Decimal64) 100000000.0;
exp += 8;
}
if (exp <= -4)
{
x /= (_Decimal64) 10000.0;
exp += 4;
}
if (exp <= -2)
{
x /= (_Decimal64) 100.0;
exp += 2;
}
if (exp <= -1)
{
x /= (_Decimal64) 10.0;
exp += 1;
}
}
if (sign)
x = -x;
return x;
}
#endif
_Decimal64
mpfr_get_decimal64 (mpfr_srcptr src, mpfr_rnd_t rnd_mode)
{
int negative;
mpfr_exp_t e;
/* the encoding of NaN, Inf, zero is the same under DPD or BID */
if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (src)))
{
if (MPFR_IS_NAN (src))
return get_decimal64_nan ();
negative = MPFR_IS_NEG (src);
if (MPFR_IS_INF (src))
return get_decimal64_inf (negative);
MPFR_ASSERTD (MPFR_IS_ZERO(src));
return get_decimal64_zero (negative);
}
e = MPFR_GET_EXP (src);
negative = MPFR_IS_NEG (src);
if (MPFR_UNLIKELY(rnd_mode == MPFR_RNDA))
rnd_mode = negative ? MPFR_RNDD : MPFR_RNDU;
/* the smallest decimal64 number is 10^(-398),
with 2^(-1323) < 10^(-398) < 2^(-1322) */
if (MPFR_UNLIKELY (e < -1323)) /* src <= 2^(-1324) < 1/2*10^(-398) */
{
if (rnd_mode == MPFR_RNDZ || rnd_mode == MPFR_RNDN
|| (rnd_mode == MPFR_RNDD && negative == 0)
|| (rnd_mode == MPFR_RNDU && negative != 0))
return get_decimal64_zero (negative);
else /* return the smallest non-zero number */
return get_decimal64_min (negative);
}
/* the largest decimal64 number is just below 10^(385) < 2^1279 */
else if (MPFR_UNLIKELY (e > 1279)) /* then src >= 2^1279 */
{
if (rnd_mode == MPFR_RNDZ
|| (rnd_mode == MPFR_RNDU && negative != 0)
|| (rnd_mode == MPFR_RNDD && negative == 0))
return get_decimal64_max (negative);
else
return get_decimal64_inf (negative);
}
else
{
/* we need to store the sign (1), the mantissa (16), and the terminating
character, thus we need at least 18 characters in s */
char s[23];
mpfr_get_str (s, &e, 10, 16, src, rnd_mode);
/* the smallest normal number is 1.000...000E-383,
which corresponds to s=[0.]1000...000 and e=-382 */
if (e < -382)
{
/* the smallest subnormal number is 0.000...001E-383 = 1E-398,
which corresponds to s=[0.]1000...000 and e=-397 */
if (e < -397)
{
if (rnd_mode == MPFR_RNDN && e == -398)
{
/* If 0.5E-398 < |src| < 1E-398 (smallest subnormal),
src should round to +/- 1E-398 in MPFR_RNDN. */
mpfr_get_str (s, &e, 10, 1, src, MPFR_RNDA);
return e == -398 && s[negative] <= '5' ?
get_decimal64_zero (negative) :
get_decimal64_min (negative);
}
if (rnd_mode == MPFR_RNDZ || rnd_mode == MPFR_RNDN
|| (rnd_mode == MPFR_RNDD && negative == 0)
|| (rnd_mode == MPFR_RNDU && negative != 0))
return get_decimal64_zero (negative);
else /* return the smallest non-zero number */
return get_decimal64_min (negative);
}
else
{
mpfr_exp_t e2;
long digits = 16 - (-382 - e);
/* if e = -397 then 16 - (-382 - e) = 1 */
mpfr_get_str (s, &e2, 10, digits, src, rnd_mode);
/* Warning: we can have e2 = e + 1 here, when rounding to
nearest or away from zero. */
s[negative + digits] = 'E';
sprintf (s + negative + digits + 1, "%ld",
(long int)e2 - digits);
return string_to_Decimal64 (s);
}
}
/* the largest number is 9.999...999E+384,
which corresponds to s=[0.]9999...999 and e=385 */
else if (e > 385)
{
if (rnd_mode == MPFR_RNDZ
|| (rnd_mode == MPFR_RNDU && negative != 0)
|| (rnd_mode == MPFR_RNDD && negative == 0))
return get_decimal64_max (negative);
else
return get_decimal64_inf (negative);
}
else /* -382 <= e <= 385 */
{
s[16 + negative] = 'E';
sprintf (s + 17 + negative, "%ld", (long int)e - 16);
return string_to_Decimal64 (s);
}
}
}
#endif /* MPFR_WANT_DECIMAL_FLOATS */
|