1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
|
/* mpfr_get_ld, mpfr_get_ld_2exp -- convert a multiple precision floating-point
number to a machine long double
Copyright 2002-2014 Free Software Foundation, Inc.
Contributed by the AriC and Caramel projects, INRIA.
This file is part of the GNU MPFR Library.
The GNU MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The GNU MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
#include <float.h>
#include "mpfr-impl.h"
#if defined(HAVE_LDOUBLE_IS_DOUBLE)
/* special code when "long double" is the same format as "double" */
long double
mpfr_get_ld (mpfr_srcptr x, mpfr_rnd_t rnd_mode)
{
return (long double) mpfr_get_d (x, rnd_mode);
}
#elif defined(HAVE_LDOUBLE_IEEE_EXT_LITTLE)
/* special code for IEEE 754 little-endian extended format */
long double
mpfr_get_ld (mpfr_srcptr x, mpfr_rnd_t rnd_mode)
{
mpfr_long_double_t ld;
mpfr_t tmp;
int inex;
MPFR_SAVE_EXPO_DECL (expo);
MPFR_SAVE_EXPO_MARK (expo);
mpfr_init2 (tmp, MPFR_LDBL_MANT_DIG);
inex = mpfr_set (tmp, x, rnd_mode);
mpfr_set_emin (-16382-63);
mpfr_set_emax (16384);
mpfr_subnormalize (tmp, mpfr_check_range (tmp, inex, rnd_mode), rnd_mode);
mpfr_prec_round (tmp, 64, MPFR_RNDZ); /* exact */
if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (tmp)))
ld.ld = (long double) mpfr_get_d (tmp, rnd_mode);
else
{
mp_limb_t *tmpmant;
mpfr_exp_t e, denorm;
tmpmant = MPFR_MANT (tmp);
e = MPFR_GET_EXP (tmp);
/* The smallest positive normal number is 2^(-16382), which is
0.5*2^(-16381) in MPFR, thus any exponent <= -16382 corresponds to a
subnormal number. The smallest positive subnormal number is 2^(-16445)
which is 0.5*2^(-16444) in MPFR thus 0 <= denorm <= 63. */
denorm = MPFR_UNLIKELY (e <= -16382) ? - e - 16382 + 1 : 0;
MPFR_ASSERTD (0 <= denorm && denorm < 64);
#if GMP_NUMB_BITS >= 64
ld.s.manl = (tmpmant[0] >> denorm);
ld.s.manh = (tmpmant[0] >> denorm) >> 32;
#elif GMP_NUMB_BITS == 32
if (MPFR_LIKELY (denorm == 0))
{
ld.s.manl = tmpmant[0];
ld.s.manh = tmpmant[1];
}
else if (denorm < 32)
{
ld.s.manl = (tmpmant[0] >> denorm) | (tmpmant[1] << (32 - denorm));
ld.s.manh = tmpmant[1] >> denorm;
}
else /* 32 <= denorm < 64 */
{
ld.s.manl = tmpmant[1] >> (denorm - 32);
ld.s.manh = 0;
}
#else
# error "GMP_NUMB_BITS must be 32 or >= 64"
/* Other values have never been supported anyway. */
#endif
if (MPFR_LIKELY (denorm == 0))
{
ld.s.exph = (e + 0x3FFE) >> 8;
ld.s.expl = (e + 0x3FFE);
}
else
ld.s.exph = ld.s.expl = 0;
ld.s.sign = MPFR_IS_NEG (x);
}
mpfr_clear (tmp);
MPFR_SAVE_EXPO_FREE (expo);
return ld.ld;
}
#else
/* generic code */
long double
mpfr_get_ld (mpfr_srcptr x, mpfr_rnd_t rnd_mode)
{
if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
return (long double) mpfr_get_d (x, rnd_mode);
else /* now x is a normal non-zero number */
{
long double r; /* result */
long double m;
double s; /* part of result */
mpfr_exp_t sh; /* exponent shift, so that x/2^sh is in the double range */
mpfr_t y, z;
int sign;
#if defined(HAVE_LDOUBLE_MAYBE_DOUBLE_DOUBLE)
if (MPFR_LDBL_MANT_DIG == 106)
{
/* Assume double-double format (as found with the PowerPC ABI).
The generic code below isn't used because numbers with
precision > 106 would not be supported. */
sh = 0; /* force sh to 0 otherwise if say x = 2^1023 + 2^(-1074)
then after shifting mpfr_get_d (y, rnd_mode) will
underflow to 0 */
mpfr_init2 (y, mpfr_get_prec (x));
mpfr_init2 (z, IEEE_DBL_MANT_DIG); /* keep the precision small */
mpfr_set (y, x, rnd_mode); /* exact */
s = mpfr_get_d (x, MPFR_RNDN); /* high part of x */
mpfr_set_d (z, s, MPFR_RNDN); /* exact */
mpfr_sub (y, x, z, MPFR_RNDN); /* exact */
/* Add the second part of y (in the correct rounding mode). */
r = (long double) s + (long double) mpfr_get_d (y, rnd_mode);
}
else
#endif
{
/* First round x to the target long double precision, so that
all subsequent operations are exact (this avoids double rounding
problems). However if the format contains numbers that have more
precision, MPFR won't be able to generate such numbers. */
mpfr_init2 (y, MPFR_LDBL_MANT_DIG);
mpfr_init2 (z, MPFR_LDBL_MANT_DIG);
/* Note about the precision of z: even though IEEE_DBL_MANT_DIG is
sufficient, z has been set to the same precision as y so that
the mpfr_sub below calls mpfr_sub1sp, which is faster than the
generic subtraction, even in this particular case (from tests
done by Patrick Pelissier on a 64-bit Core2 Duo against r7285).
But here there is an important cancellation in the subtraction.
TODO: get more information about what has been tested. */
mpfr_set (y, x, rnd_mode);
sh = MPFR_GET_EXP (y);
sign = MPFR_SIGN (y);
MPFR_SET_EXP (y, 0);
MPFR_SET_POS (y);
r = 0.0;
do
{
s = mpfr_get_d (y, MPFR_RNDN); /* high part of y */
r += (long double) s;
mpfr_set_d (z, s, MPFR_RNDN); /* exact */
mpfr_sub (y, y, z, MPFR_RNDN); /* exact */
}
while (!MPFR_IS_ZERO (y));
}
mpfr_clear (z);
mpfr_clear (y);
/* we now have to multiply back by 2^sh */
MPFR_ASSERTD (r > 0);
if (sh != 0)
{
/* An overflow may occur (example: 0.5*2^1024) */
while (r < 1.0)
{
r += r;
sh--;
}
if (sh > 0)
m = 2.0;
else
{
m = 0.5;
sh = -sh;
}
for (;;)
{
if (sh % 2)
r = r * m;
sh >>= 1;
if (sh == 0)
break;
m = m * m;
}
}
if (sign < 0)
r = -r;
return r;
}
}
#endif
/* contributed by Damien Stehle */
long double
mpfr_get_ld_2exp (long *expptr, mpfr_srcptr src, mpfr_rnd_t rnd_mode)
{
long double ret;
mpfr_exp_t exp;
mpfr_t tmp;
if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (src)))
return (long double) mpfr_get_d_2exp (expptr, src, rnd_mode);
tmp[0] = *src; /* Hack copy mpfr_t */
MPFR_SET_EXP (tmp, 0);
ret = mpfr_get_ld (tmp, rnd_mode);
if (MPFR_IS_PURE_FP(src))
{
exp = MPFR_GET_EXP (src);
/* rounding can give 1.0, adjust back to 0.5 <= abs(ret) < 1.0 */
if (ret == 1.0)
{
ret = 0.5;
exp ++;
}
else if (ret == -1.0)
{
ret = -0.5;
exp ++;
}
MPFR_ASSERTN ((ret >= 0.5 && ret < 1.0)
|| (ret <= -0.5 && ret > -1.0));
MPFR_ASSERTN (exp >= LONG_MIN && exp <= LONG_MAX);
}
else
exp = 0;
*expptr = exp;
return ret;
}
|