summaryrefslogtreecommitdiff
path: root/src/hypot.c
blob: 44cb6b3e357d18b7445800bab53d4487382e0cd6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
/* mpfr_hypot -- Euclidean distance

Copyright 2001-2019 Free Software Foundation, Inc.
Contributed by the AriC and Caramba projects, INRIA.

This file is part of the GNU MPFR Library.

The GNU MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

The GNU MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
License for more details.

You should have received a copy of the GNU Lesser General Public License
along with the GNU MPFR Library; see the file COPYING.LESSER.  If not, see
https://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */

#define MPFR_NEED_LONGLONG_H
#include "mpfr-impl.h"

/* The computation of hypot of x and y is done by  *
 *    hypot(x,y)= sqrt(x^2+y^2) = z                */

int
mpfr_hypot (mpfr_ptr z, mpfr_srcptr x, mpfr_srcptr y, mpfr_rnd_t rnd_mode)
{
  int inexact, exact;
  mpfr_t t, te, ti; /* auxiliary variables */
  mpfr_prec_t N, Nz; /* size variables */
  mpfr_prec_t Nt;   /* precision of the intermediary variable */
  mpfr_prec_t threshold;
  mpfr_exp_t Ex, sh;
  mpfr_uexp_t diff_exp;

  MPFR_SAVE_EXPO_DECL (expo);
  MPFR_ZIV_DECL (loop);
  MPFR_BLOCK_DECL (flags);

  MPFR_LOG_FUNC
    (("x[%Pu]=%.*Rg y[%Pu]=%.*Rg rnd=%d",
      mpfr_get_prec (x), mpfr_log_prec, x,
      mpfr_get_prec (y), mpfr_log_prec, y, rnd_mode),
     ("z[%Pu]=%.*Rg inexact=%d",
      mpfr_get_prec (z), mpfr_log_prec, z, inexact));

  /* particular cases */
  if (MPFR_ARE_SINGULAR (x, y))
    {
      if (MPFR_IS_INF (x) || MPFR_IS_INF (y))
        {
          /* Return +inf, even when the other number is NaN. */
          MPFR_SET_INF (z);
          MPFR_SET_POS (z);
          MPFR_RET (0);
        }
      else if (MPFR_IS_NAN (x) || MPFR_IS_NAN (y))
        {
          MPFR_SET_NAN (z);
          MPFR_RET_NAN;
        }
      else if (MPFR_IS_ZERO (x))
        return mpfr_abs (z, y, rnd_mode);
      else /* y is necessarily 0 */
        return mpfr_abs (z, x, rnd_mode);
    }

  if (mpfr_cmpabs (x, y) < 0)
    {
      mpfr_srcptr u;
      u = x;
      x = y;
      y = u;
    }

  /* now |x| >= |y| */

  Ex = MPFR_GET_EXP (x);
  diff_exp = (mpfr_uexp_t) Ex - MPFR_GET_EXP (y);

  N = MPFR_PREC (x);   /* Precision of input variable */
  Nz = MPFR_PREC (z);   /* Precision of output variable */
  threshold = (MAX (N, Nz) + (rnd_mode == MPFR_RNDN ? 1 : 0)) << 1;
  if (rnd_mode == MPFR_RNDA)
    rnd_mode = MPFR_RNDU; /* since the result is positive, RNDA = RNDU */

  /* Is |x| a suitable approximation to the precision Nz ?
     (see algorithms.tex for explanations) */
  if (diff_exp > threshold)
    /* result is |x| or |x|+ulp(|x|,Nz) */
    {
      if (MPFR_UNLIKELY (rnd_mode == MPFR_RNDU))
        {
          /* If z > abs(x), then it was already rounded up; otherwise
             z = abs(x), and we need to add one ulp due to y. */
          if (mpfr_abs (z, x, rnd_mode) == 0)
            {
              mpfr_nexttoinf (z);
              /* since mpfr_nexttoinf does not set the overflow flag,
                 we have to check manually for overflow */
              if (MPFR_UNLIKELY (MPFR_IS_INF (z)))
                MPFR_SET_OVERFLOW ();
            }
          MPFR_RET (1);
        }
      else /* MPFR_RNDZ, MPFR_RNDD, MPFR_RNDN */
        {
          if (MPFR_LIKELY (Nz >= N))
            {
              mpfr_abs (z, x, rnd_mode);  /* exact */
              MPFR_RET (-1);
            }
          else
            {
              MPFR_SET_EXP (z, Ex);
              MPFR_SET_SIGN (z, MPFR_SIGN_POS);
              MPFR_RNDRAW_GEN (inexact, z, MPFR_MANT (x), N, rnd_mode, 1,
                               goto addoneulp,
                               if (MPFR_UNLIKELY (++ MPFR_EXP (z) >
                                                  __gmpfr_emax))
                                 return mpfr_overflow (z, rnd_mode, 1);
                               );

              if (MPFR_UNLIKELY (inexact == 0))
                inexact = -1;
              MPFR_RET (inexact);
            }
        }
    }

  /* General case */

  N = MAX (MPFR_PREC (x), MPFR_PREC (y));

  /* working precision */
  Nt = Nz + MPFR_INT_CEIL_LOG2 (Nz) + 4;

  mpfr_init2 (t, Nt);
  mpfr_init2 (te, Nt);
  mpfr_init2 (ti, Nt);

  MPFR_SAVE_EXPO_MARK (expo);

  /* Scale x and y to avoid any overflow and underflow in x^2
     (as |x| >= |y|), and to limit underflow cases for y or y^2.
     We have: x = Mx * 2^Ex with 1/2 <= |Mx| < 1, and we choose:
     sh = floor((Emax - 1) / 2) - Ex.
     Thus (x * 2^sh)^2 = Mx^2 * 2^(2*floor((Emax-1)/2)), which has an
     exponent of at most Emax - 1. Therefore (x * 2^sh)^2 + (y * 2^sh)^2
     will have an exponent of at most Emax, even after rounding as we
     round toward zero. Using a larger sh wouldn't guarantee an absence
     of overflow. Note that the scaling of y can underflow only when the
     target precision is huge, otherwise the case would already have been
     handled by the diff_exp > threshold code.
     FIXME: Friedland in "Algorithm 312: Absolute Value and Square Root of a
     Complex Number" (Communications of the ACM, 1967) avoids overflow by
     computing |x|*sqrt(1+(y/x)^2) if |x| >= |y|, and |y|*sqrt(1+(x/y)^2)
     otherwise.
     [VL] This trick (which is a scaling by a non-power of 2, thus doesn't
     really bring new behavior w.r.t. overflow/underflow exceptions) may be
     useful for hardware floating-point formats because a whole power-of-2
     scaling code is likely to take more time than the additional division,
     but in the context of multiple-precision, I doubt that it is a good
     idea. Ideally scaling by a power of 2 could be done in a constant time,
     e.g. with MPFR_ALIAS; but one needs to be very careful... */
  sh = (mpfr_get_emax () - 1) / 2 - Ex;

  MPFR_ZIV_INIT (loop, Nt);
  for (;;)
    {
      mpfr_prec_t err;

      exact = mpfr_mul_2si (te, x, sh, MPFR_RNDZ);
      exact |= mpfr_mul_2si (ti, y, sh, MPFR_RNDZ);
      exact |= mpfr_sqr (te, te, MPFR_RNDZ);
      /* Use fma in order to avoid underflow when diff_exp<=MPFR_EMAX_MAX-2 */
      exact |= mpfr_fma (t, ti, ti, te, MPFR_RNDZ);
      exact |= mpfr_sqrt (t, t, MPFR_RNDZ);

      err = Nt < N ? 4 : 2;
      if (MPFR_LIKELY (exact == 0
                       || MPFR_CAN_ROUND (t, Nt-err, Nz, rnd_mode)))
        break;

      MPFR_ZIV_NEXT (loop, Nt);
      mpfr_set_prec (t, Nt);
      mpfr_set_prec (te, Nt);
      mpfr_set_prec (ti, Nt);
    }
  MPFR_ZIV_FREE (loop);

  MPFR_BLOCK (flags, inexact = mpfr_div_2si (z, t, sh, rnd_mode));
  MPFR_ASSERTD (exact == 0 || inexact != 0 || rnd_mode == MPFR_RNDF);

  mpfr_clear (t);
  mpfr_clear (ti);
  mpfr_clear (te);

  /*
    exact  inexact
    0         0         result is exact, ternary flag is 0
    0       non zero    t is exact, ternary flag given by inexact
    1         0         impossible (see above)
    1       non zero    ternary flag given by inexact
  */

  MPFR_SAVE_EXPO_FREE (expo);

  if (MPFR_OVERFLOW (flags))
    MPFR_SET_OVERFLOW ();
  /* hypot(x,y) >= |x|, thus underflow is not possible. */

  return mpfr_check_range (z, inexact, rnd_mode);
}