summaryrefslogtreecommitdiff
path: root/src/invsqrt_limb.h
blob: cecc5c972fe342f8846f4aee12ca864e812a8f62 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
/* __gmpfr_invsqrt_limb_approx -- reciprocal approximate square root of a limb

Copyright 2017-2020 Free Software Foundation, Inc.
Contributed by the AriC and Caramba projects, INRIA.

This file is part of the GNU MPFR Library.

The GNU MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

The GNU MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
License for more details.

You should have received a copy of the GNU Lesser General Public License
along with the GNU MPFR Library; see the file COPYING.LESSER.  If not, see
https://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */

#define MPFR_NEED_LONGLONG_H
#include "mpfr-impl.h"

/* for now, we only provide __gmpfr_invert_limb for 64-bit limb */
#if GMP_NUMB_BITS == 64

/* For 257 <= d10 <= 1024, T[d10-257] = floor(sqrt(2^30/d10)).
   Sage code:
   T = [floor(sqrt(2^30/d10)) for d10 in [257..1024]] */
static const mp_limb_t T[768] =
  {       2044, 2040, 2036, 2032, 2028, 2024, 2020, 2016, 2012, 2009, 2005,
    2001, 1997, 1994, 1990, 1986, 1983, 1979, 1975, 1972, 1968, 1965, 1961,
    1958, 1954, 1951, 1947, 1944, 1941, 1937, 1934, 1930, 1927, 1924, 1920,
    1917, 1914, 1911, 1907, 1904, 1901, 1898, 1895, 1891, 1888, 1885, 1882,
    1879, 1876, 1873, 1870, 1867, 1864, 1861, 1858, 1855, 1852, 1849, 1846,
    1843, 1840, 1837, 1834, 1831, 1828, 1826, 1823, 1820, 1817, 1814, 1812,
    1809, 1806, 1803, 1801, 1798, 1795, 1792, 1790, 1787, 1784, 1782, 1779,
    1777, 1774, 1771, 1769, 1766, 1764, 1761, 1759, 1756, 1754, 1751, 1749,
    1746, 1744, 1741, 1739, 1736, 1734, 1731, 1729, 1727, 1724, 1722, 1719,
    1717, 1715, 1712, 1710, 1708, 1705, 1703, 1701, 1698, 1696, 1694, 1692,
    1689, 1687, 1685, 1683, 1680, 1678, 1676, 1674, 1672, 1670, 1667, 1665,
    1663, 1661, 1659, 1657, 1655, 1652, 1650, 1648, 1646, 1644, 1642, 1640,
    1638, 1636, 1634, 1632, 1630, 1628, 1626, 1624, 1622, 1620, 1618, 1616,
    1614, 1612, 1610, 1608, 1606, 1604, 1602, 1600, 1598, 1597, 1595, 1593,
    1591, 1589, 1587, 1585, 1583, 1582, 1580, 1578, 1576, 1574, 1572, 1571,
    1569, 1567, 1565, 1563, 1562, 1560, 1558, 1556, 1555, 1553, 1551, 1549,
    1548, 1546, 1544, 1542, 1541, 1539, 1537, 1536, 1534, 1532, 1531, 1529,
    1527, 1526, 1524, 1522, 1521, 1519, 1517, 1516, 1514, 1513, 1511, 1509,
    1508, 1506, 1505, 1503, 1501, 1500, 1498, 1497, 1495, 1494, 1492, 1490,
    1489, 1487, 1486, 1484, 1483, 1481, 1480, 1478, 1477, 1475, 1474, 1472,
    1471, 1469, 1468, 1466, 1465, 1463, 1462, 1461, 1459, 1458, 1456, 1455,
    1453, 1452, 1450, 1449, 1448, 1446, 1445, 1443, 1442, 1441, 1439, 1438,
    1436, 1435, 1434, 1432, 1431, 1430, 1428, 1427, 1426, 1424, 1423, 1422,
    1420, 1419, 1418, 1416, 1415, 1414, 1412, 1411, 1410, 1408, 1407, 1406,
    1404, 1403, 1402, 1401, 1399, 1398, 1397, 1395, 1394, 1393, 1392, 1390,
    1389, 1388, 1387, 1385, 1384, 1383, 1382, 1381, 1379, 1378, 1377, 1376,
    1374, 1373, 1372, 1371, 1370, 1368, 1367, 1366, 1365, 1364, 1362, 1361,
    1360, 1359, 1358, 1357, 1355, 1354, 1353, 1352, 1351, 1350, 1349, 1347,
    1346, 1345, 1344, 1343, 1342, 1341, 1339, 1338, 1337, 1336, 1335, 1334,
    1333, 1332, 1331, 1330, 1328, 1327, 1326, 1325, 1324, 1323, 1322, 1321,
    1320, 1319, 1318, 1317, 1315, 1314, 1313, 1312, 1311, 1310, 1309, 1308,
    1307, 1306, 1305, 1304, 1303, 1302, 1301, 1300, 1299, 1298, 1297, 1296,
    1295, 1294, 1293, 1292, 1291, 1290, 1289, 1288, 1287, 1286, 1285, 1284,
    1283, 1282, 1281, 1280, 1279, 1278, 1277, 1276, 1275, 1274, 1273, 1272,
    1271, 1270, 1269, 1268, 1267, 1266, 1265, 1264, 1264, 1263, 1262, 1261,
    1260, 1259, 1258, 1257, 1256, 1255, 1254, 1253, 1252, 1252, 1251, 1250,
    1249, 1248, 1247, 1246, 1245, 1244, 1243, 1242, 1242, 1241, 1240, 1239,
    1238, 1237, 1236, 1235, 1234, 1234, 1233, 1232, 1231, 1230, 1229, 1228,
    1228, 1227, 1226, 1225, 1224, 1223, 1222, 1222, 1221, 1220, 1219, 1218,
    1217, 1216, 1216, 1215, 1214, 1213, 1212, 1211, 1211, 1210, 1209, 1208,
    1207, 1207, 1206, 1205, 1204, 1203, 1202, 1202, 1201, 1200, 1199, 1198,
    1198, 1197, 1196, 1195, 1194, 1194, 1193, 1192, 1191, 1190, 1190, 1189,
    1188, 1187, 1187, 1186, 1185, 1184, 1183, 1183, 1182, 1181, 1180, 1180,
    1179, 1178, 1177, 1177, 1176, 1175, 1174, 1174, 1173, 1172, 1171, 1171,
    1170, 1169, 1168, 1168, 1167, 1166, 1165, 1165, 1164, 1163, 1162, 1162,
    1161, 1160, 1159, 1159, 1158, 1157, 1157, 1156, 1155, 1154, 1154, 1153,
    1152, 1152, 1151, 1150, 1149, 1149, 1148, 1147, 1147, 1146, 1145, 1145,
    1144, 1143, 1142, 1142, 1141, 1140, 1140, 1139, 1138, 1138, 1137, 1136,
    1136, 1135, 1134, 1133, 1133, 1132, 1131, 1131, 1130, 1129, 1129, 1128,
    1127, 1127, 1126, 1125, 1125, 1124, 1123, 1123, 1122, 1121, 1121, 1120,
    1119, 1119, 1118, 1118, 1117, 1116, 1116, 1115, 1114, 1114, 1113, 1112,
    1112, 1111, 1110, 1110, 1109, 1109, 1108, 1107, 1107, 1106, 1105, 1105,
    1104, 1103, 1103, 1102, 1102, 1101, 1100, 1100, 1099, 1099, 1098, 1097,
    1097, 1096, 1095, 1095, 1094, 1094, 1093, 1092, 1092, 1091, 1091, 1090,
    1089, 1089, 1088, 1088, 1087, 1086, 1086, 1085, 1085, 1084, 1083, 1083,
    1082, 1082, 1081, 1080, 1080, 1079, 1079, 1078, 1077, 1077, 1076, 1076,
    1075, 1075, 1074, 1073, 1073, 1072, 1072, 1071, 1071, 1070, 1069, 1069,
    1068, 1068, 1067, 1067, 1066, 1065, 1065, 1064, 1064, 1063, 1063, 1062,
    1062, 1061, 1060, 1060, 1059, 1059, 1058, 1058, 1057, 1057, 1056, 1055,
    1055, 1054, 1054, 1053, 1053, 1052, 1052, 1051, 1051, 1050, 1049, 1049,
    1048, 1048, 1047, 1047, 1046, 1046, 1045, 1045, 1044, 1044, 1043, 1043,
    1042, 1041, 1041, 1040, 1040, 1039, 1039, 1038, 1038, 1037, 1037, 1036,
    1036, 1035, 1035, 1034, 1034, 1033, 1033, 1032, 1032, 1031, 1031, 1030,
    1030, 1029, 1029, 1028, 1028, 1027, 1027, 1026, 1026, 1025, 1025, 1024,
    1024 };

/* table of v0^3 */
static const mp_limb_t T3[768] =
  {             8539701184, 8489664000, 8439822656, 8390176768, 8340725952,
    8291469824, 8242408000, 8193540096, 8144865728, 8108486729, 8060150125,
    8012006001, 7964053973, 7928215784, 7880599000, 7833173256, 7797729087,
    7750636739, 7703734375, 7668682048, 7622111232, 7587307125, 7541066681,
    7506509912, 7460598664, 7426288351, 7380705123, 7346640384, 7312680621,
    7267563953, 7233848504, 7189057000, 7155584983, 7122217024, 7077888000,
    7044762213, 7011739944, 6978821031, 6935089643, 6902411264, 6869835701,
    6837362792, 6804992375, 6761990971, 6729859072, 6697829125, 6665900968,
    6634074439, 6602349376, 6570725617, 6539203000, 6507781363, 6476460544,
    6445240381, 6414120712, 6383101375, 6352182208, 6321363049, 6290643736,
    6260024107, 6229504000, 6199083253, 6168761704, 6138539191, 6108415552,
    6088387976, 6058428767, 6028568000, 5998805513, 5969141144, 5949419328,
    5919918129, 5890514616, 5861208627, 5841725401, 5812581592, 5783534875,
    5754585088, 5735339000, 5706550403, 5677858304, 5658783768, 5630252139,
    5611284433, 5582912824, 5554637011, 5535839609, 5507723096, 5489031744,
    5461074081, 5442488479, 5414689216, 5396209064, 5368567751, 5350192749,
    5322708936, 5304438784, 5277112021, 5258946419, 5231776256, 5213714904,
    5186700891, 5168743489, 5150827583, 5124031424, 5106219048, 5079577959,
    5061868813, 5044200875, 5017776128, 5000211000, 4982686912, 4956477625,
    4939055927, 4921675101, 4895680392, 4878401536, 4861163384, 4843965888,
    4818245769, 4801149703, 4784094125, 4767078987, 4741632000, 4724717752,
    4707843776, 4691010024, 4674216448, 4657463000, 4632407963, 4615754625,
    4599141247, 4582567781, 4566034179, 4549540393, 4533086375, 4508479808,
    4492125000, 4475809792, 4459534136, 4443297984, 4427101288, 4410944000,
    4394826072, 4378747456, 4362708104, 4346707968, 4330747000, 4314825152,
    4298942376, 4283098624, 4267293848, 4251528000, 4235801032, 4220112896,
    4204463544, 4188852928, 4173281000, 4157747712, 4142253016, 4126796864,
    4111379208, 4096000000, 4080659192, 4073003173, 4057719875, 4042474857,
    4027268071, 4012099469, 3996969003, 3981876625, 3966822287, 3959309368,
    3944312000, 3929352552, 3914430976, 3899547224, 3884701248, 3877292411,
    3862503009, 3847751263, 3833037125, 3818360547, 3811036328, 3796416000,
    3781833112, 3767287616, 3760028875, 3745539377, 3731087151, 3716672149,
    3709478592, 3695119336, 3680797184, 3666512088, 3659383421, 3645153819,
    3630961153, 3623878656, 3609741304, 3595640768, 3588604291, 3574558889,
    3560550183, 3553559576, 3539605824, 3525688648, 3518743761, 3504881359,
    3491055413, 3484156096, 3470384744, 3463512697, 3449795831, 3436115229,
    3429288512, 3415662216, 3408862625, 3395290527, 3381754501, 3375000000,
    3361517992, 3354790473, 3341362375, 3334661784, 3321287488, 3307949000,
    3301293169, 3288008303, 3281379256, 3268147904, 3261545587, 3248367641,
    3241792000, 3228667352, 3222118333, 3209046875, 3202524424, 3189506048,
    3183010111, 3170044709, 3163575232, 3150662696, 3144219625, 3131359847,
    3124943128, 3118535181, 3105745579, 3099363912, 3086626816, 3080271375,
    3067586677, 3061257408, 3048625000, 3042321849, 3036027392, 3023464536,
    3017196125, 3004685307, 2998442888, 2992209121, 2979767519, 2973559672,
    2961169856, 2954987875, 2948814504, 2936493568, 2930345991, 2924207000,
    2911954752, 2905841483, 2899736776, 2887553024, 2881473967, 2875403448,
    2863288000, 2857243059, 2851206632, 2839159296, 2833148375, 2827145944,
    2815166528, 2809189531, 2803221000, 2791309312, 2785366143, 2779431416,
    2767587264, 2761677827, 2755776808, 2749884201, 2738124199, 2732256792,
    2726397773, 2714704875, 2708870984, 2703045457, 2697228288, 2685619000,
    2679826869, 2674043072, 2668267603, 2656741625, 2650991104, 2645248887,
    2639514968, 2633789341, 2622362939, 2616662152, 2610969633, 2605285376,
    2593941624, 2588282117, 2582630848, 2576987811, 2571353000, 2560108032,
    2554497863, 2548895896, 2543302125, 2537716544, 2526569928, 2521008881,
    2515456000, 2509911279, 2504374712, 2498846293, 2487813875, 2482309864,
    2476813977, 2471326208, 2465846551, 2460375000, 2454911549, 2444008923,
    2438569736, 2433138625, 2427715584, 2422300607, 2416893688, 2411494821,
    2400721219, 2395346472, 2389979753, 2384621056, 2379270375, 2373927704,
    2368593037, 2363266368, 2357947691, 2352637000, 2342039552, 2336752783,
    2331473976, 2326203125, 2320940224, 2315685267, 2310438248, 2305199161,
    2299968000, 2294744759, 2289529432, 2284322013, 2273930875, 2268747144,
    2263571297, 2258403328, 2253243231, 2248091000, 2242946629, 2237810112,
    2232681443, 2227560616, 2222447625, 2217342464, 2212245127, 2207155608,
    2202073901, 2197000000, 2191933899, 2186875592, 2181825073, 2176782336,
    2171747375, 2166720184, 2161700757, 2156689088, 2151685171, 2146689000,
    2141700569, 2136719872, 2131746903, 2126781656, 2121824125, 2116874304,
    2111932187, 2106997768, 2102071041, 2097152000, 2092240639, 2087336952,
    2082440933, 2077552576, 2072671875, 2067798824, 2062933417, 2058075648,
    2053225511, 2048383000, 2043548109, 2038720832, 2033901163, 2029089096,
    2024284625, 2019487744, 2019487744, 2014698447, 2009916728, 2005142581,
    2000376000, 1995616979, 1990865512, 1986121593, 1981385216, 1976656375,
    1971935064, 1967221277, 1962515008, 1962515008, 1957816251, 1953125000,
    1948441249, 1943764992, 1939096223, 1934434936, 1929781125, 1925134784,
    1920495907, 1915864488, 1915864488, 1911240521, 1906624000, 1902014919,
    1897413272, 1892819053, 1888232256, 1883652875, 1879080904, 1879080904,
    1874516337, 1869959168, 1865409391, 1860867000, 1856331989, 1851804352,
    1851804352, 1847284083, 1842771176, 1838265625, 1833767424, 1829276567,
    1824793048, 1824793048, 1820316861, 1815848000, 1811386459, 1806932232,
    1802485313, 1798045696, 1798045696, 1793613375, 1789188344, 1784770597,
    1780360128, 1775956931, 1775956931, 1771561000, 1767172329, 1762790912,
    1758416743, 1758416743, 1754049816, 1749690125, 1745337664, 1740992427,
    1736654408, 1736654408, 1732323601, 1728000000, 1723683599, 1719374392,
    1719374392, 1715072373, 1710777536, 1706489875, 1702209384, 1702209384,
    1697936057, 1693669888, 1689410871, 1685159000, 1685159000, 1680914269,
    1676676672, 1672446203, 1672446203, 1668222856, 1664006625, 1659797504,
    1655595487, 1655595487, 1651400568, 1647212741, 1643032000, 1643032000,
    1638858339, 1634691752, 1630532233, 1630532233, 1626379776, 1622234375,
    1618096024, 1618096024, 1613964717, 1609840448, 1605723211, 1605723211,
    1601613000, 1597509809, 1593413632, 1593413632, 1589324463, 1585242296,
    1581167125, 1581167125, 1577098944, 1573037747, 1568983528, 1568983528,
    1564936281, 1560896000, 1556862679, 1556862679, 1552836312, 1548816893,
    1548816893, 1544804416, 1540798875, 1536800264, 1536800264, 1532808577,
    1528823808, 1528823808, 1524845951, 1520875000, 1516910949, 1516910949,
    1512953792, 1509003523, 1509003523, 1505060136, 1501123625, 1501123625,
    1497193984, 1493271207, 1489355288, 1489355288, 1485446221, 1481544000,
    1481544000, 1477648619, 1473760072, 1473760072, 1469878353, 1466003456,
    1466003456, 1462135375, 1458274104, 1454419637, 1454419637, 1450571968,
    1446731091, 1446731091, 1442897000, 1439069689, 1439069689, 1435249152,
    1431435383, 1431435383, 1427628376, 1423828125, 1423828125, 1420034624,
    1416247867, 1416247867, 1412467848, 1408694561, 1408694561, 1404928000,
    1401168159, 1401168159, 1397415032, 1397415032, 1393668613, 1389928896,
    1389928896, 1386195875, 1382469544, 1382469544, 1378749897, 1375036928,
    1375036928, 1371330631, 1367631000, 1367631000, 1363938029, 1363938029,
    1360251712, 1356572043, 1356572043, 1352899016, 1349232625, 1349232625,
    1345572864, 1341919727, 1341919727, 1338273208, 1338273208, 1334633301,
    1331000000, 1331000000, 1327373299, 1327373299, 1323753192, 1320139673,
    1320139673, 1316532736, 1312932375, 1312932375, 1309338584, 1309338584,
    1305751357, 1302170688, 1302170688, 1298596571, 1298596571, 1295029000,
    1291467969, 1291467969, 1287913472, 1287913472, 1284365503, 1280824056,
    1280824056, 1277289125, 1277289125, 1273760704, 1270238787, 1270238787,
    1266723368, 1266723368, 1263214441, 1259712000, 1259712000, 1256216039,
    1256216039, 1252726552, 1249243533, 1249243533, 1245766976, 1245766976,
    1242296875, 1242296875, 1238833224, 1235376017, 1235376017, 1231925248,
    1231925248, 1228480911, 1228480911, 1225043000, 1221611509, 1221611509,
    1218186432, 1218186432, 1214767763, 1214767763, 1211355496, 1207949625,
    1207949625, 1204550144, 1204550144, 1201157047, 1201157047, 1197770328,
    1197770328, 1194389981, 1191016000, 1191016000, 1187648379, 1187648379,
    1184287112, 1184287112, 1180932193, 1180932193, 1177583616, 1174241375,
    1174241375, 1170905464, 1170905464, 1167575877, 1167575877, 1164252608,
    1164252608, 1160935651, 1160935651, 1157625000, 1154320649, 1154320649,
    1151022592, 1151022592, 1147730823, 1147730823, 1144445336, 1144445336,
    1141166125, 1141166125, 1137893184, 1137893184, 1134626507, 1134626507,
    1131366088, 1128111921, 1128111921, 1124864000, 1124864000, 1121622319,
    1121622319, 1118386872, 1118386872, 1115157653, 1115157653, 1111934656,
    1111934656, 1108717875, 1108717875, 1105507304, 1105507304, 1102302937,
    1102302937, 1099104768, 1099104768, 1095912791, 1095912791, 1092727000,
    1092727000, 1089547389, 1089547389, 1086373952, 1086373952, 1083206683,
    1083206683, 1080045576, 1080045576, 1076890625, 1076890625, 1073741824,
    1073741824 };

/* umul_hi(h, x, y) puts in h the high part of x*y */
#ifdef HAVE_MULX_U64
#include <immintrin.h>
#define umul_hi(h, x, y) _mulx_u64 (x, y, (unsigned long long *) &h)
#else
#define umul_hi(h, x, y)                        \
  do {                                          \
    mp_limb_t _l;                               \
    umul_ppmm (h, _l, x, y);                    \
  } while (0)
#endif

/* given 2^62 <= d < 2^64, put in r an approximation of
   s = floor(2^96/sqrt(r)) - 2^64, with r <= s <= r + 15 */
#define __gmpfr_invsqrt_limb_approx(r, d)                               \
  do {                                                                  \
    mp_limb_t _d, _i, _v0, _e0, _d37, _v1, _e1, _h, _v2, _e2;           \
    _d = (d);                                                           \
    _i = (_d >> 54) - 256;                                              \
    /* i = d10 - 256 */                                                 \
    _v0 = T[_i];                                                        \
    _d37 = 1 + (_d >> 27);                                              \
    _e0 = T3[_i] * _d37;                                                \
    /* the value (_v0 << 57) - _e0 is less than 2^61 */                 \
    _v1 = (_v0 << 11) + (((_v0 << 57) - _e0) >> 47);                    \
    _e1 = - _v1 * _v1 * _d37;                                           \
    umul_hi (_h, _v1, _e1);                                             \
    /* _h = floor(e_1*v_1/2^64) */                                      \
    _v2 = (_v1 << 10) + (_h >> 6);                                      \
    umul_hi (_h, _v2 * _v2, _d);                                        \
    /* in _h + 2, one +1 accounts for the lower neglected part of */    \
    /* v2^2*d. the other +1 is to compute ceil((h+1)/2) */              \
    _e2 = (MPFR_LIMB_ONE << 61) - ((_h + 2) >> 1);                      \
    _h = _v2 * _e2;                                                     \
    (r) = (_v2 << 33) + (_h >> 29);                                     \
  } while (0)

/* given 2^62 <= d < 2^64, return a 32-bit approximation r of
   sqrt(2^126/d) */
#define __gmpfr_invsqrt_halflimb_approx(r, d)                           \
  do {                                                                  \
    mp_limb_t _d, _i, _v0, _e0, _d37, _v1, _e1, _h;                     \
    _d = (d);                                                           \
    _i = (_d >> 54) - 256;                                              \
    /* i = d10 - 256 */                                                 \
    _v0 = T[_i];                                                        \
    _d37 = 1 + (_d >> 27);                                              \
    _e0 = T3[_i] * _d37;                                                \
    /* the value (_v0 << 57) - _e0 is less than 2^61 */                 \
    _v1 = (_v0 << 11) + (((_v0 << 57) - _e0) >> 47);                    \
    _e1 = - _v1 * _v1 * _d37;                                           \
    umul_hi (_h, _v1, _e1);                                             \
    /* _h = floor(e_1*v_1/2^64) */                                      \
    (r) = (_v1 << 10) + (_h >> 6);                                      \
  } while (0)

/* given 2^62 <= n < 2^64, put in s an approximation of sqrt(2^64*n),
   with: s <= floor(sqrt(2^64*u)) <= s + 7 */
#define __gmpfr_sqrt_limb_approx(s, n)                                  \
  do {                                                                  \
    mp_limb_t _n, _x, _y, _z, _t;                                       \
    _n = (n);                                                           \
    __gmpfr_invsqrt_halflimb_approx (_x, _n);                           \
    MPFR_ASSERTD(_x < MPFR_LIMB_ONE << 32);                             \
    /* x has 32 bits, and is near (by below) sqrt(2^126/n) */           \
    _y = (_x * (_n >> 31)) >> 32;                                       \
    MPFR_ASSERTD(_y < MPFR_LIMB_ONE << 32);                             \
    /* y is near (by below) sqrt(n) */                                  \
    _z = _n - _y * _y;                                                  \
    /* reduce _z so that _z <= 2*_y */                                  \
    /* the maximal value of _z is 2*(2^32-1) */                         \
    while (_z > 2 * ((MPFR_LIMB_ONE << 32) - 1))                        \
      {                                                                 \
        _z -= (_y + _y) + 1;                                            \
        _y ++;                                                          \
      }                                                                 \
    /* now z <= 2*(2^32-1): one reduction is enough */                  \
    if (_z > _y + _y)                                                   \
      {                                                                 \
        _z -= (_y + _y) + 1;                                            \
        _y ++;                                                          \
      }                                                                 \
    /* _x * _z should be < 2^64 */                                      \
    _t = (_x * _z) >> 32;                                               \
    (s) = (_y << 32) + _t;                                              \
  } while (0)

/* given 2^62 <= u < 2^64, put in s the value floor(sqrt(2^64*u)),
   and in rh in rl the remainder: 2^64*u - s^2 = 2^64*rh + rl, with
   2^64*rh + rl <= 2*s, and in invs the approximation of 2^96/sqrt(u) */
#define __gmpfr_sqrt_limb(s, rh, rl, invs, u)                   \
  do {                                                          \
    mp_limb_t _u, _invs, _r, _h, _l;                            \
    _u = (u);                                                   \
    __gmpfr_invsqrt_limb_approx (_invs, _u);                    \
    umul_hi (_h, _invs, _u);                                    \
    _r = _h + _u;                                               \
    /* make sure _r has its most significant bit set */         \
    if (MPFR_UNLIKELY(_r < MPFR_LIMB_HIGHBIT))                  \
      _r = MPFR_LIMB_HIGHBIT;                                   \
    /* we know _r <= sqrt(2^64*u) <= _r + 16 */                 \
    umul_ppmm (_h, _l, _r, _r);                                 \
    sub_ddmmss (_h, _l, _u, 0, _h, _l);                         \
    /* now h:l <= 30*_r */                                      \
    MPFR_ASSERTD(_h < 30);                                      \
    if (_h >= 16)                                               \
      { /* subtract 16r+64 to h:l, add 8 to _r */               \
        sub_ddmmss (_h, _l, _h, _l, _r >> 60, _r << 4);         \
        sub_ddmmss (_h, _l, _h, _l, 0, 64);                     \
        _r += 8;                                                \
      }                                                         \
    if (_h >= 8)                                                \
      { /* subtract 8r+16 to h:l, add 4 to _r */                \
        sub_ddmmss (_h, _l, _h, _l, _r >> 61, _r << 3);         \
        sub_ddmmss (_h, _l, _h, _l, 0, 16);                     \
        _r += 4;                                                \
      }                                                         \
    if (_h >= 4)                                                \
      { /* subtract 4r+4 to h:l, add 2 to _r */                 \
        sub_ddmmss (_h, _l, _h, _l, _r >> 62, _r << 2);         \
        sub_ddmmss (_h, _l, _h, _l, 0, 4);                      \
        _r += 2;                                                \
      }                                                         \
    while (_h > 1 || ((_h == 1) && (_l > 2 * _r)))              \
      { /* subtract 2r+1 to h:l, add 1 to _r */                 \
        sub_ddmmss (_h, _l, _h, _l, _r >> 63, (_r << 1) + 1);   \
        _r ++;                                                  \
      }                                                         \
    (s) = _r;                                                   \
    (rh) = _h;                                                   \
    (rl) = _l;                                                   \
    (invs) = _invs;                                             \
  } while (0)

#endif /* GMP_NUMB_BITS == 64 */