1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
|
/* mpfr_log1p -- Compute log(1+x)
Copyright 2001-2019 Free Software Foundation, Inc.
Contributed by the AriC and Caramba projects, INRIA.
This file is part of the GNU MPFR Library.
The GNU MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The GNU MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
https://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
#define MPFR_NEED_LONGLONG_H
#include "mpfr-impl.h"
/* Put in y an approximation of log(1+x) for x small.
We assume |x| < 1, in which case:
|x/2| <= |log(1+x)| = |x - x^2/2 + x^3/3 - x^4/4 + ...| <= |x|.
Return k such that the error is bounded by 2^k*ulp(y).
*/
static int
mpfr_log1p_small (mpfr_ptr y, mpfr_srcptr x)
{
mpfr_prec_t p = MPFR_PREC(y), err;
mpfr_t t, u;
unsigned long i;
int k;
MPFR_ASSERTD(MPFR_GET_EXP (x) <= 0); /* ensures |x| < 1 */
/* in the following, theta represents a value with |theta| <= 2^(1-p)
(might be a different value each time) */
mpfr_init2 (t, p);
mpfr_init2 (u, p);
mpfr_set (t, x, MPFR_RNDF); /* t = x * (1 + theta) */
mpfr_set (y, t, MPFR_RNDF); /* exact */
for (i = 2; ; i++)
{
mpfr_mul (t, t, x, MPFR_RNDF); /* t = x^i * (1 + theta)^i */
mpfr_div_ui (u, t, i, MPFR_RNDF); /* u = x^i/i * (1 + theta)^(i+1) */
if (MPFR_GET_EXP (u) <= MPFR_GET_EXP (y) - p) /* |u| < ulp(y) */
break;
if (i & 1)
mpfr_add (y, y, u, MPFR_RNDF); /* error <= ulp(y) */
else
mpfr_sub (y, y, u, MPFR_RNDF); /* error <= ulp(y) */
}
/* We assume |(1 + theta)^(i+1)| <= 2.
The neglected part is at most |u| + |u|/2 + ... <= 2|u| < 2 ulp(y)
which has to be multiplied by |(1 + theta)^(i+1)| <= 2, thus at most
4 ulp(y).
The rounding error on y is bounded by:
* for the (i-2) add/sub, each error is bounded by ulp(y),
and since |y| <= |x|, this yields (i-2)*ulp(x)
* from Lemma 3.1 from [Higham02] (see algorithms.tex),
the relative error on u at step i is bounded by:
(i+1)*epsilon/(1-(i+1)*epsilon) where epsilon = 2^(1-p).
If (i+1)*epsilon <= 1/2, then the relative error on u at
step i is bounded by 2*(i+1)*epsilon, and since |u| <= 1/2^(i+1)
at step i, this gives an absolute error bound of;
2*epsilon*x*(3/2^3 + 4/2^4 + 5/2^5 + ...) <= 2*2^(1-p)*x =
4*2^(-p)*x <= 4*ulp(x).
If (i+1)*epsilon <= 1/2, then the relative error on u at step i
is bounded by (i+1)*epsilon/(1-(i+1)*epsilon) <= 1, thus it follows
|(1 + theta)^(i+1)| <= 2.
Finally the total error is bounded by 4*ulp(y) + (i-2)*ulp(x) + 4*ulp(x)
= 4*ulp(y) + (i+2)*ulp(x).
Since x/2 <= y, we have ulp(x) <= 2*ulp(y), thus the error is bounded by:
(2*i+8)*ulp(y).
*/
err = 2 * i + 8;
k = __gmpfr_int_ceil_log2 (err);
MPFR_ASSERTN(k < p);
/* if k < p, since k = ceil(log2(err)), we have err <= 2^k <= 2^(p-1),
thus i+4 = err/2 <= 2^(p-2), thus (i+4)*epsilon <= 1/2, which implies
our assumption (i+1)*epsilon <= 1/2. */
mpfr_clear (t);
mpfr_clear (u);
return k;
}
/* The computation of log1p is done by
log1p(x) = log(1+x)
except when x is very small, in which case log1p(x) = x + tiny error,
or when x is small, where we use directly the Taylor expansion.
*/
int
mpfr_log1p (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd_mode)
{
int comp, inexact;
mpfr_exp_t ex;
MPFR_SAVE_EXPO_DECL (expo);
MPFR_LOG_FUNC
(("x[%Pu]=%.*Rg rnd=%d", mpfr_get_prec (x), mpfr_log_prec, x, rnd_mode),
("y[%Pu]=%.*Rg inexact=%d", mpfr_get_prec (y), mpfr_log_prec, y,
inexact));
if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
{
if (MPFR_IS_NAN (x))
{
MPFR_SET_NAN (y);
MPFR_RET_NAN;
}
/* check for inf or -inf (result is not defined) */
else if (MPFR_IS_INF (x))
{
if (MPFR_IS_POS (x))
{
MPFR_SET_INF (y);
MPFR_SET_POS (y);
MPFR_RET (0);
}
else
{
MPFR_SET_NAN (y);
MPFR_RET_NAN;
}
}
else /* x is zero */
{
MPFR_ASSERTD (MPFR_IS_ZERO (x));
MPFR_SET_ZERO (y); /* log1p(+/- 0) = +/- 0 */
MPFR_SET_SAME_SIGN (y, x);
MPFR_RET (0);
}
}
ex = MPFR_GET_EXP (x);
if (ex < 0) /* -0.5 < x < 0.5 */
{
/* For x > 0, abs(log(1+x)-x) < x^2/2.
For x > -0.5, abs(log(1+x)-x) < x^2. */
if (MPFR_IS_POS (x))
MPFR_FAST_COMPUTE_IF_SMALL_INPUT (y, x, - ex - 1, 0, 0, rnd_mode, {});
else
MPFR_FAST_COMPUTE_IF_SMALL_INPUT (y, x, - ex, 0, 1, rnd_mode, {});
}
comp = mpfr_cmp_si (x, -1);
/* log1p(x) is undefined for x < -1 */
if (MPFR_UNLIKELY(comp <= 0))
{
if (comp == 0)
/* x=0: log1p(-1)=-inf (divide-by-zero exception) */
{
MPFR_SET_INF (y);
MPFR_SET_NEG (y);
MPFR_SET_DIVBY0 ();
MPFR_RET (0);
}
MPFR_SET_NAN (y);
MPFR_RET_NAN;
}
MPFR_SAVE_EXPO_MARK (expo);
/* General case */
{
/* Declaration of the intermediary variable */
mpfr_t t;
/* Declaration of the size variable */
mpfr_prec_t Ny = MPFR_PREC(y); /* target precision */
mpfr_prec_t Nt; /* working precision */
mpfr_exp_t err; /* error */
MPFR_ZIV_DECL (loop);
/* compute the precision of intermediary variable */
/* the optimal number of bits : see algorithms.tex */
Nt = Ny + MPFR_INT_CEIL_LOG2 (Ny) + 6;
/* if |x| is smaller than 2^(-e), we will loose about e bits
in log(1+x) */
if (MPFR_EXP(x) < 0)
Nt += -MPFR_EXP(x);
/* initialize of intermediary variable */
mpfr_init2 (t, Nt);
/* First computation of log1p */
MPFR_ZIV_INIT (loop, Nt);
for (;;)
{
int k;
/* small case: assuming the AGM algorithm used by mpfr_log uses
log2(p) steps for a precision of p bits, we try the special
variant whenever EXP(x) <= -p/log2(p). */
k = 1 + __gmpfr_int_ceil_log2 (Ny); /* the +1 avoids a division by 0
when Ny=1 */
if (MPFR_GET_EXP (x) <= - (mpfr_exp_t) (Ny / k))
/* this implies EXP(x) <= 0 thus x < 1 */
err = Nt - mpfr_log1p_small (t, x);
else
{
/* compute log1p */
inexact = mpfr_add_ui (t, x, 1, MPFR_RNDN); /* 1+x */
/* if inexact = 0, then t = x+1, and the result is simply log(t) */
if (inexact == 0)
{
inexact = mpfr_log (y, t, rnd_mode);
goto end;
}
mpfr_log (t, t, MPFR_RNDN); /* log(1+x) */
/* the error is bounded by (1/2+2^(1-EXP(t))*ulp(t)
(cf algorithms.tex)
if EXP(t)>=2, then error <= ulp(t)
if EXP(t)<=1, then error <= 2^(2-EXP(t))*ulp(t) */
err = Nt - MAX (0, 2 - MPFR_GET_EXP (t));
}
if (MPFR_LIKELY (MPFR_CAN_ROUND (t, err, Ny, rnd_mode)))
break;
/* increase the precision */
MPFR_ZIV_NEXT (loop, Nt);
mpfr_set_prec (t, Nt);
}
inexact = mpfr_set (y, t, rnd_mode);
end:
MPFR_ZIV_FREE (loop);
mpfr_clear (t);
}
MPFR_SAVE_EXPO_FREE (expo);
return mpfr_check_range (y, inexact, rnd_mode);
}
|